Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21674, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034750

RESUMO

Hg and Cd are the two most toxic heavy metal ions that could be found in aqueous solutions. In this study, a chemosensor based on 5-(4-((4-nitrophenyl) diazenyl) phenyl)-1,3,4-oxadiazole-2-thiol (DOT) was reported to detect these ions simultaneously. DOT showed high selectivity towards Hg ion by changing the color of the solution from beige to gold-yellow at different concentrations of Hg ion. In comparison, other relevant metals, such as Li+, Na+, K+, Cs+, Mg2+, Ca2+, Al3+, Fe2+, Ag+, Cu2+, Pb2+, Ni2+, Zn2+, Cr3+, Fe3+, Pb4+, Mn2+, and Cd2+ did not affect the color of the DOT solution as the interfering ions. Despite no changes in the color of DOT solution in the presence of Cd ion, a solution containing DOT-Hg complex was changed from gold-yellow to orange by adding Cd ion, providing an approach for detecting Hg and Cd ion simultaneously with UV-Vis and Fluorescent spectroscopy. DOT exhibited a high association constant with a detection limit of 0.05 µM for Hg and Cd ions in an aqueous solution. The results of quantum mechanics (QM) calculations were also consistent with the experimental observations, which indicated that changes in the band gap could explain the various colors of DOT complex with metal ions.

2.
Comput Biol Med ; 166: 107393, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37741226

RESUMO

For the first time, molecular dynamics (MD) simulation was used to examine melittin's adsorption and encapsulation on covalently functionalized carbon nanotubes (fCNTs). The CNT wall and terminals were functionalized with carboxy, hydroxyl, and amine functional groups. The findings demonstrated that the melittin would be adsorbed on the fCNT's outer surface when just the CNT terminal is functionalized. On the other hand, melittin is encapsulated inside the nanotube space when the CNTs' walls and terminals are functionalized. Encapsulated melittin has an alpha-helix structure similar to melittin in a water medium. With the use of parameters like root mean square fluctuations (RMSF) and radius of gyration (Rg), the melittin conformational changes were evaluated. According to the findings, the amine functional group significantly alters the melittin's conformation. The wall and terminals fCNTs with hydroxyl and carboxyl could encapsulate melittin inside them with a stable structure. This result will be useful for the design of peptide carriers.

3.
Comput Methods Programs Biomed ; 230: 107332, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36603233

RESUMO

BACKGROUND AND OBJECTIVE: Doxorubicin (DOX) is a known anticancer drug which is widely used in cancer therapy. Carbon nanotubes (CNTs) are among the most promising platforms for smart drug delivery applications. However, due to the toxicity and their low sulubility their application is limited and their functionalization with wide range of biomolecules are suggested. Therefore, the functionalized carbon nanotubes (f-CNT) with carboxyl (CNT-COO) and folic acid (CNT-COO-FA) were investigated as drug-carrier. METHODS: Molecular dynamics (MD) simulation along with the Density Functional Theory (DFT) methods are being used to study the drug loading process on functionalized carbon nanotubes. RESULTS: The results indicate that doxorubicin molecules interact more with CNT-COO-FA than CNT-COO. The embedded dipalmitoylphosphatidylcholine (DPPC) lipid bilayer with a folate receptor was considered a cancerous cell's representative model. Then the drug release from the f-CNTs near the lipid bilayer was simulated. The results showed that CNT-COO-FA with a pH and ligand-sensitive mechanism strongly interacts with cancerous cells, which led to higher drug release, in agreement with the experimental results. The conformational changes of the lipid bilayer and folate receptor during drug release were evaluated. The analysis showed that drug release from CNT-COO-FA has significantly changed lipid bilayer and receptor conformations. The obtained results were interpreted and justified by considering the molecular mechanisms which control the drug delivery in the studied systems. CONCLUSIONS: Based on the obtained results, CNT-COO-FA has a better performance during the drug release compared to CNT-COO in delivering doxorubicin. Both pH and ligand sensitive mechanisms are found to be responsible for higher drug delivery efficiency of CNT-COO-FA. In contrast, CNT-COO can only enhance drug delivery efficiently with a pH-sensitive mechanism.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Ligantes , Doxorrubicina/farmacologia , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Ácido Fólico , Membrana Celular
4.
Langmuir ; 38(41): 12421-12431, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36179319

RESUMO

Understanding the adsorption dynamics of nanoparticles at solid-liquid interfaces is of paramount importance to engineer nanoparticles for a variety of applications. The nanoparticle surface chemistry is significant for controlling the adsorption dynamics. This study aimed to experimentally examine the adsorption of surface-modified round-shaped silica nanoparticles (with an average diameter of 12 nm), grafted with hydrophobic (propyl chains) and/or hydrophilic (polyethylene glycol chains) agents, at an aqueous solution-silica interface with spherical soda-lime glass beads (diameter of 3 mm) being used as adsorbents. While no measurable adsorption was observed for solely hydrophobic or hydrophilic nanoparticles, a considerable level of adsorption was detected for nanoparticles comprising both hydrophobic and hydrophilic agents. Various kinetic models were employed to model the adsorption dynamics of the responsive nanoparticles. The results demonstrated that the mixed diffusion-kinetics models could predict the dynamics better than the adsorption diffusion models, indicating that the dynamics is controlled by a combination of liquid film diffusion, intra-particle diffusion, and mass action. Additionally, the adsorption of the surface-modified silica nanoparticles onto a mineral silica surface was examined using molecular dynamics simulations. The interaction energy for nanoparticles comprising both hydrophobic and hydrophilic agents was evaluated to be more favorable than that of solely hydrophobic or hydrophilic nanoparticles.

5.
Sci Rep ; 12(1): 13450, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927311

RESUMO

Focused on the assessment of the diphenhydramine hydrochloride (DPH) capabilities as an alternative to conventional and harmful industrial corrosion inhibitors, electrochemical techniques were employed. The optimum concentration of 1000 ppm was determined by molecular simulation and validated through electrochemical experiments. The results acquired from the electrochemical impedance spectroscopy (EIS) study showed that DPH at a concentration of 1000 ppm has a corrosion efficiency of 91.43% after 6 h immersion. The DPH molecules' orientation on the surface was assessed based on EIS predicting horizontal adsorption on the surface. Molecular simulations were done to explore the adsorption mechanism of DPH. The DPH molecules' orientation on the surface was also assessed based on computational studies confirming the horizontal adsorption predicted by EIS.


Assuntos
Ácido Clorídrico , Aço , Adsorção , Corrosão , Antagonistas dos Receptores Histamínicos , Ácido Clorídrico/química , Aço/química
6.
Heliyon ; 6(12): e05681, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344790

RESUMO

A coronavirus identified as COVID-19 is the reason for an infection outbreak which is started in December 2019. NO completely effective drugs and treatments are not recognized for this virus. Recently, saffron and its compounds were used to treat different viral diseases. Saffron extract and its major ingredients have shown antiviral effects. In this study, the steered molecular dynamics simulation was used for investigating the effect of four main components of saffron that include: crocin, crocetin, safranal, and picrocrocin as candidate for drug molecules, on COVID-19. The binding energies between drug molecules and spike protein and the main protease of the virus were evaluated. The obtained results based on Lennard-Jones and electrostatic potentials demonstrated that crocetin has a high affinity towards spike protein and also the main protease of the virus. Also, the quantum mechanics calculations elucidated that the crocetin could overcome energy barrier of lipid bilayer with strong dipole moment and polarizability. The pharmacokinetic and ADMET properties proved that crocetin could be a suitable drug candidate. So, crocetin could be a promising drug for treatment of COVID-19.

7.
J Mol Graph Model ; 88: 11-22, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30616088

RESUMO

Adsorption of the drug doxorubicin (DOX) onto covalent functionalized carbon nanotubes (CNTs) as drug carriers was studied by employing molecular dynamics (MD) simulation. CNT was covalently functionalized by the chemical groups: amine, carboxyl and hydroxyl and the change in the electrostatic charge of CNT as a result of functionalization was investigated by quantum mechanics calculations. The drug adsorption onto the functionalized CNTs (f-CNT) was examined by analyzing the evaluated radial probability of the drug by MD simulation. Overall consideration of the results demonstrated that surface functionalization enhances the loading capacity of CNT for the drug encapsulation, also agglomeration of unprotonated drug molecules has increased encapsulation capacity. Analysis of the obtained results indicated that carboxyl and amine f-CNTs can act as a pH sensitive drug carrier where their protonation in acidic condition can decrease the electrostatic interactions of the loaded drug with the f-CNT and as a result can promote the drug release.


Assuntos
Doxorrubicina/química , Composição de Medicamentos , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Teoria Quântica , Adsorção , Algoritmos , Concentração de Íons de Hidrogênio , Conformação Molecular , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...