Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2309181120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812730

RESUMO

Highly siderophile elements (HSEs; namely Ru, Rh, Pd, Re, Os, Ir, Pt, and Au) in Earth's mantle require the addition of metals after the formation of Earth's core. Early, large collisions have the potential to deliver metals, but the details of their mixing with Earth's mantle remain unresolved. As a large projectile disrupts and penetrates Earth's mantle, a fraction of its metallic core may directly merge with Earth's core. Ensuing gravitational instabilities remove the remaining projectile's core stranded in Earth's mantle, leaving the latter deprived of HSEs. Here, we propose a framework that can efficiently retain the metallic components during large impacts. The mechanism is based on the ubiquitous presence of a partially molten region in the mantle beneath an impact-generated magma ocean, and it involves rapid three-phase flow with solid silicate, molten silicate, and liquid metal as well as long-term mixing by mantle convection. In addition, large low-shear-velocity provinces in the lower mantle may originate from compositional heterogeneities resulting from the proposed three-phase flow during high-energy collisions.

2.
Sci Adv ; 9(12): eade2711, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961892

RESUMO

The onset and rates of continental growth are first-order indicators of early Earth dynamics, and whether substantial crust existed in the Hadean or much later has long been debated. Here, we present a theoretical analysis of published Hf and Nd isotopic data representing the depleted mantle and demonstrate that continental growth must have started in the early Hadean. Whereas the traditional interpretation of depleted mantle signatures in crustal rocks assumes unrealistic instantaneous mantle mixing, our modeling incorporates the effect of a finite mixing time over which these signatures are recorded in rocks produced through mantle melting. This effect is shown to delay, by as much as 0.65 to 0.75 billion years, the appearance of the earliest depleted mantle signatures in continental crust. Our results suggest that published observations of εHf, ε143Nd, and µ142Nd require Hadean growth of continental crust, with a minimum of 50% of today's continental volume already existing by the end of Hadean.

3.
Proc Natl Acad Sci U S A ; 120(4): e2215903120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649424

RESUMO

The isotopic characteristics of ocean island basalts have long been used to infer the nature of their source and the long-term evolution of the Earth's mantle. Anticorrelation between tungsten and helium isotopic signatures is a particularly puzzling feature in those basalts, which no single process appears to explain. Traditionally, the high 3He/4He signature has been attributed to an undegassed reservoir in the deep mantle. Additional processes needed to obtain low 182W/184W often entail unobserved ancillary geochemical effects. It has been suggested, however, that the core feeds the lower mantle with primordial helium, obviating the need for an undegassed mantle reservoir. Independently, the tungsten-rich core has been suggested to impart the plume source with anomalous tungsten isotope signatures. We advance the idea that isotopic diffusion may simultaneously transport both tungsten and helium across the core-mantle boundary, with the striking implication that diffusion can naturally account for the observed isotopic trend. By modeling the long-term isotopic evolution of mantle domains, we demonstrate that this mechanism can account for more than sufficient isotopic ratios in plume-source material, which, after dynamical transport to the Earth's surface, are consistent with the present-day mantle W-He isotopic heterogeneities. No undegassed mantle reservoir is required, bearing significance on early Earth conditions such as the extent of magma oceans.


Assuntos
Hélio , Tungstênio , Difusão , Isótopos
4.
Nature ; 603(7899): 86-90, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236974

RESUMO

The Hadean eon, following the global-scale melting of the mantle1-3, is expected to be a dynamic period, during which Earth experienced vastly different conditions. Geologic records, however, suggest that the surface environment of Earth was already similar to the present by the middle of the Hadean4,5. Under what conditions a harsh surface environment could turn into a habitable one remains uncertain6. Here we show that a hydrated mantle with small-scale chemical heterogeneity, created as a result of magma ocean solidification, is the key to ocean formation, the onset of plate tectonics and the rapid removal of greenhouse gases, which are all essential to create a habitable environment on terrestrial planets. When the mantle is wet and dominated by high-magnesium pyroxenites, the removal of carbon dioxide from the atmosphere is expected to be more than ten times faster than the case of a pyrolitic homogeneous mantle and could be completed within  160 million years. Such a chemically heterogeneous mantle would also produce oceanic crust rich in olivine, which is reactive with ocean water and promotes serpentinization. Therefore, conditions similar to the Lost City hydrothermal field7-9 may have existed globally in the Hadean seafloor.


Assuntos
Planeta Terra , Planetas , Atmosfera , Oceanos e Mares , Água
5.
Astrobiology ; 22(6): 713-734, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235378

RESUMO

A sufficient amount of water is required at the surface to develop water oceans. A significant fraction of water, however, remains in the mantle during magma ocean solidification, and thus the existence of water oceans is not guaranteed even for exoplanets located in the habitable zone. To discuss the likelihood of ocean formation, we built two models to predict the rate of mantle degassing during the magma ocean stage and the subsequent solid-state convection stage. We find that planets with low H2O/CO2 ratios would not have a sufficient amount of surface water to develop water oceans immediately after magma ocean solidification, and the majority of the water inventory would be retained in the mantle during their subsequent evolution regardless of planetary size. This is because oceanless planets are likely to operate under stagnant lid convection, and for such planets, dehydration stiffening of the depleted lithospheric mantle would limit the rate of mantle degassing. In contrast, a significant fraction of CO2 would already be degassed during magma ocean solidification. With a strong greenhouse effect, all surface water would exist as vapor, and water oceans may be absent throughout planetary evolution. Volatile concentrations in the bulk silicate Earth are close to the threshold amount for ocean formation, so if Venus shared similar concentrations, small differences in solar radiation may explain the divergent evolutionary paths of Earth and Venus.


Assuntos
Planetas , Água , Dióxido de Carbono , Evolução Planetária , Oceanos e Mares
6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916297

RESUMO

Halogens are important tracers of various planetary formation and evolution processes, and an accurate understanding of their abundances in the Earth's silicate reservoirs can help us reconstruct the history of interactions among mantle, atmosphere, and oceans. The previous studies of halogen abundances in the bulk silicate Earth (BSE) are based on the assumption of constant ratios of element abundances, which is shown to result in a gross underestimation of the BSE halogen budget. Here we present a more robust approach using a log-log linear model. Using this method, we provide an internally consistent estimate of halogen abundances in the depleted mid-ocean ridge basalts (MORB)-source mantle, the enriched ocean island basalts (OIB)-source mantle, the depleted mantle, and BSE. Unlike previous studies, our results suggest that halogens in BSE are not more depleted compared to elements with similar volatility, thereby indicating sufficient halogen retention during planetary accretion. According to halogen abundances in the depleted mantle and BSE, we estimate that ∼87% of all stable halogens reside in the present-day mantle. Given our understanding of the history of mantle degassing and the evolution of crustal recycling, the revised halogen budget suggests that deep halogen cycle is characterized by efficient degassing in the early Earth and subsequent net regassing in the rest of Earth history. Such an evolution of deep halogen cycle presents a major step toward a more comprehensive understanding of ancient ocean alkalinity, which affects carbon partitioning within the hydrosphere, the stability of crustal and authigenic minerals, and the development of early life.

7.
Life (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34833018

RESUMO

The presence of exposed land on the early Earth is a prerequisite for a certain type of prebiotic chemical evolution in which the oscillating activity of water, driven by short-term, day-night, and seasonal cycles, facilitates the synthesis of proto-biopolymers. Exposed land is, however, not guaranteed to exist on the early Earth, which is likely to have been drastically different from the modern Earth. This mini-review attempts to provide an up-to-date account on the possibility of exposed land on the early Earth by integrating recent geological and geophysical findings. Owing to the competing effects of the growing ocean and continents in the Hadean, a substantial expanse of the Earth's surface (∼20% or more) could have been covered by exposed continents in the mid-Hadean. In contrast, exposed land may have been limited to isolated ocean islands in the late Hadean and early Archean. The importance of exposed land during the origins of life remains an open question.

8.
Sci Adv ; 6(21): eaaz6234, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32671213

RESUMO

The continental crust is a major geochemical reservoir, the evolution of which has shaped the surface environment of Earth. In this study, we present a new model of coupled crust-mantle-atmosphere evolution to constrain the growth of continental crust with atmospheric 40Ar/36Ar. Our model is the first to combine argon degassing with the thermal evolution of Earth in a self-consistent manner and to incorporate the effect of crustal recycling and reworking using the distributions of crustal formation and surface ages. Our results suggest that the history of argon degassing favors rapid crustal growth during the early Earth. The mass of continental crust, highly enriched in potassium, is estimated to have already reached >80% of the present-day level during the early Archean. The presence of such potassium-rich, likely felsic, crust has important implications for tectonics, surface environment, and the regime of mantle convection in the early Earth.

9.
Life (Basel) ; 8(4)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400350

RESUMO

How life began on Earth is still largely shrouded in mystery. One of the central ideas for various origins of life scenarios is Darwin's "warm little pond". In these small bodies of water, simple prebiotic compounds such as amino acids, nucleobases, and so on, were produced from reagents such as hydrogen cyanide and aldehydes/ketones. These simple prebiotic compounds underwent further reactions, producing more complex molecules. The process of chemical evolution would have produced increasingly complex molecules, eventually yielding a molecule with the properties of information storage and replication prone to random mutations, the hallmark of both the origin of life and evolution. However, there is one problematic issue with this scenario: On the Earth >3.5 Gyr ago there would have likely been no exposed continental crust above sea level. The only land areas that protruded out of the oceans would have been associated with hotspot volcanic islands, such as the Hawaiian island chain today. On these long-lived islands, in association with reduced gas-rich eruptions accompanied by intense volcanic lightning, prebiotic reagents would have been produced that accumulated in warm or cool little ponds and lakes on the volcano flanks. During seasonal wet⁻dry cycles, molecules with increasing complexity could have been produced. These islands would have thus been the most likely places for chemical evolution and the processes associated with the origin of life. The islands would eventually be eroded away and their chemical evolution products would have been released into the oceans where Darwinian evolution ultimately produced the biochemistry associated with all life on Earth today.

10.
Philos Trans A Math Phys Eng Sci ; 376(2132)2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275159

RESUMO

Resolving the modes of mantle convection through Earth history, i.e. when plate tectonics started and what kind of mantle dynamics reigned before, is essential to the understanding of the evolution of the whole Earth system, because plate tectonics influences almost all aspects of modern geological processes. This is a challenging problem because plate tectonics continuously rejuvenates Earth's surface on a time scale of about 100 Myr, destroying evidence for its past operation. It thus becomes essential to exploit indirect evidence preserved in the buoyant continental crust, part of which has survived over billions of years. This contribution starts with an in-depth review of existing models for continental growth. Growth models proposed so far can be categorized into three types: crust-based, mantle-based and other less direct inferences, and the first two types are particularly important as their difference reflects the extent of crustal recycling, which can be related to subduction. Then, a theoretical basis for a change in the mode of mantle convection in the Precambrian is reviewed, along with a critical appraisal of some popular notions for early Earth dynamics. By combining available geological and geochemical observations with geodynamical considerations, a tentative hypothesis is presented for the evolution of mantle dynamics and its relation to surface environment; the early onset of plate tectonics and gradual mantle hydration are responsible not only for the formation of continental crust but also for its preservation as well as its emergence above sea level. Our current understanding of various material properties and elementary processes is still too premature to build a testable, quantitative model for this hypothesis, but such modelling efforts could potentially transform the nature of the data-starved early Earth research by quantifying the extent of preservation bias.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.

11.
Philos Trans A Math Phys Eng Sci ; 375(2094)2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28416728

RESUMO

The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×1014 g yr-1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

12.
Sci Adv ; 2(8): e1601168, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27551689

RESUMO

The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth.


Assuntos
Planeta Terra , Evolução Planetária , Modelos Teóricos , Planetas , Algoritmos
13.
Ann N Y Acad Sci ; 1260: 87-94, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22256796

RESUMO

Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution.

14.
Science ; 320(5881): 1291; author reply 1291, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18535229

RESUMO

Silver and Behn (Reports, 4 January 2008, p. 85) proposed that intermittent plate tectonics may resolve a long-standing paradox in Earth's thermal evolution. However, their analysis misses one important term, which subsequently brings their main conclusion into question. In addition, the Phanerozoic eustasy record indicates that the claimed effect of intermittency is probably weak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...