Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14253, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902339

RESUMO

The antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms. To fill this knowledge gap, we solved cryo-EM structures of the S. aureus ribosome in complex with mRNA, tRNA, EF-G and FA to 2.5 Å resolution and the corresponding complex structures with the recently developed FA derivative FA-cyclopentane (FA-CP) to 2.0 Å resolution. With both FA variants, the majority of the ribosomal particles are observed in chimeric state and only a minor population in post-translocational state. As expected, FA binds in a pocket between domains I, II and III of EF-G and the sarcin-ricin loop of 23S rRNA. FA-CP binds in an identical position, but its cyclopentane moiety provides additional contacts to EF-G and 23S rRNA, suggesting that its improved resistance profile towards mutations in EF-G is due to higher-affinity binding. These high-resolution structures reveal new details about the S. aureus ribosome, including confirmation of many rRNA modifications, and provide an optimal starting point for future structure-based drug discovery on an important clinical drug target.


Assuntos
Microscopia Crioeletrônica , Ciclopentanos , Ácido Fusídico , Fator G para Elongação de Peptídeos , Ribossomos , Staphylococcus aureus , Ácido Fusídico/farmacologia , Ácido Fusídico/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Ribossomos/metabolismo , Ribossomos/efeitos dos fármacos , Ciclopentanos/farmacologia , Ciclopentanos/química , Fator G para Elongação de Peptídeos/metabolismo , Fator G para Elongação de Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Modelos Moleculares , RNA de Transferência/metabolismo , RNA de Transferência/química
2.
Nat Commun ; 12(1): 3607, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127662

RESUMO

Ribosomes are recycled for a new round of translation initiation by dissociation of ribosomal subunits, messenger RNA and transfer RNA from their translational post-termination complex. Here we present cryo-EM structures of the human 55S mitochondrial ribosome (mitoribosome) and the mitoribosomal large 39S subunit in complex with mitoribosome recycling factor (RRFmt) and a recycling-specific homolog of elongation factor G (EF-G2mt). These structures clarify an unusual role of a mitochondria-specific segment of RRFmt, identify the structural distinctions that confer functional specificity to EF-G2mt, and show that the deacylated tRNA remains with the dissociated 39S subunit, suggesting a distinct sequence of events in mitoribosome recycling. Furthermore, biochemical and structural analyses reveal that the molecular mechanism of antibiotic fusidic acid resistance for EF-G2mt is markedly different from that of mitochondrial elongation factor EF-G1mt, suggesting that the two human EF-Gmts have evolved diversely to negate the effect of a bacterial antibiotic.


Assuntos
Resistência Microbiana a Medicamentos/genética , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Microscopia Crioeletrônica , Humanos , Mitocôndrias , Ribossomos Mitocondriais/efeitos dos fármacos , Modelos Moleculares , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética
3.
Nat Commun ; 11(1): 3830, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737313

RESUMO

The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/química , RNA Mitocondrial/química , RNA de Transferência/química , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Sci Rep ; 5: 12970, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26264741

RESUMO

Elongation factor G (EF-G), a translational GTPase responsible for tRNA-mRNA translocation possesses a conserved histidine (H91 in Escherichia coli) at the apex of switch-II, which has been implicated in GTPase activation and GTP hydrolysis. While H91A, H91R and H91E mutants showed different degrees of defect in ribosome associated GTP hydrolysis, H91Q behaved like the WT. However, all these mutants, including H91Q, are much more defective in inorganic phosphate (Pi) release, thereby suggesting that H91 facilitates Pi release. In crystal structures of the ribosome bound EF-G•GTP a tight coupling between H91 and the γ-phosphate of GTP can be seen. Following GTP hydrolysis, H91 flips ~140° in the opposite direction, probably with Pi still coupled to it. This, we suggest, promotes Pi to detach from GDP and reach the inter-domain space of EF-G, which constitutes an exit path for the Pi. Molecular dynamics simulations are consistent with this hypothesis and demonstrate a vital role of an Mg(2+) ion in the process.


Assuntos
Sequência Conservada , Histidina/química , Fator G para Elongação de Peptídeos/química , Fosfatos/química , Sequência de Aminoácidos , Guanosina Trifosfato/química , Hidrólise , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
5.
Sci Adv ; 1(4)2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26229983

RESUMO

During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome.

6.
Elife ; 2: e00411, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23755360

RESUMO

Termination of messenger RNA translation in Bacteria and Archaea is initiated by release factors (RFs) 1 or 2 recognizing a stop codon in the ribosomal A site and releasing the peptide from the P-site transfer RNA. After release, RF-dissociation is facilitated by the G-protein RF3. Structures of ribosomal complexes with RF1 or RF2 alone or with RF3 alone-RF3 bound to a non-hydrolyzable GTP-analog-have been reported. Here, we present the cryo-EM structure of a post-termination ribosome containing both apo-RF3 and RF1. The conformation of RF3 is distinct from those of free RF3•GDP and ribosome-bound RF3•GDP(C/N)P. Furthermore, the conformation of RF1 differs from those observed in RF3-lacking ribosomal complexes. Our study provides structural keys to the mechanism of guanine nucleotide exchange on RF3 and to an L12-mediated ribosomal recruitment of RF3. In conjunction with previous observations, our data provide the foundation to structurally characterize the complete action cycle of the G-protein RF3. DOI:http://dx.doi.org/10.7554/eLife.00411.001.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Ribossomos/metabolismo , Terminação da Transcrição Genética , Sítios de Ligação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Simulação de Dinâmica Molecular , Mutação , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/ultraestrutura , Ligação Proteica , Conformação Proteica , Proteínas Ribossômicas/metabolismo , Ribossomos/ultraestrutura , Fatores de Tempo
7.
J Biol Chem ; 287(36): 30257-67, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22767604

RESUMO

Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Ácido Fusídico/química , Fator G para Elongação de Peptídeos/química , Staphylococcus aureus/enzimologia , Substituição de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Ácido Fusídico/farmacologia , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Mutação de Sentido Incorreto , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Staphylococcus aureus/genética
8.
Open Biol ; 2(3): 120016, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22645663

RESUMO

Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 Å crystal structures of FusB. We show that FusB is a two-domain protein lacking homology to known structures, where the N-terminal domain is a four-helix bundle and the C-terminal domain has an alpha/beta fold containing a C4 treble clef zinc finger motif and two loop regions with conserved basic residues. Using hybrid constructs between S. aureus EF-G that binds to FusB and Escherichia coli EF-G that does not, we show that the sequence determinants for FusB recognition reside in domain IV and involve the C-terminal helix of S. aureus EF-G. Further, using kinetic assays in a reconstituted translation system, we demonstrate that FusB can rescue FA inhibition of tRNA translocation as well as ribosome recycling. We propose that FusB rescues S. aureus from FA inhibition by preventing formation or facilitating dissociation of the FA-locked EF-G-ribosome complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Fusídico/farmacologia , Fator G para Elongação de Peptídeos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Fator G para Elongação de Peptídeos/genética , Ligação Proteica/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/genética , Staphylococcus aureus/metabolismo
9.
ACS Chem Biol ; 7(6): 1120-7, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22489843

RESUMO

The ribosomal stalk complex binds and recruits translation factors to the ribosome during protein biosynthesis. In Escherichia coli the stalk is composed of protein L10 and four copies of L7/L12. Despite the crucial role of the stalk, mechanistic details of L7/L12 subunit exchange are not established. By incubating isotopically labeled intact ribosomes with their unlabeled counterparts we monitored the exchange of the labile stalk proteins by recording mass spectra as a function of time. On the basis of kinetic analysis, we proposed a mechanism whereby exchange proceeds via L7/L12 monomers and dimers. We also compared exchange of L7/L12 from free ribosomes with exchange from ribosomes in complex with elongation factor G (EF-G), trapped in the posttranslocational state by fusidic acid. Results showed that binding of EF-G reduces the L7/L12 exchange reaction of monomers by ~27% and of dimers by ~47% compared with exchange from free ribosomes. This is consistent with a model in which binding of EF-G does not modify interactions between the L7/L12 monomers but rather one of the four monomers, and as a result one of the two dimers, become anchored to the ribosome-EF-G complex preventing their free exchange. Overall therefore our results not only provide mechanistic insight into the exchange of L7/L12 monomers and dimers and the effects of EF-G binding but also have implications for modulating stability in response to environmental and functional stimuli within the cell.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Cinética , Espectrometria de Massas , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Ribossômicas/química , Ribossomos/química , Ribossomos/metabolismo
10.
FEBS J ; 277(18): 3789-803, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20718859

RESUMO

Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) on the ribosome in a post-translocational state. It is used clinically against Gram-positive bacteria such as pathogenic strains of Staphylococcus aureus, but no structural information has been available for EF-G from these species. We have solved the apo crystal structure of EF-G from S. aureus to 1.9 Å resolution. This structure shows a dramatically different overall conformation from previous structures of EF-G, although the individual domains are highly similar. Between the different structures of free or ribosome-bound EF-G, domains III-V move relative to domains I-II, resulting in a displacement of the tip of domain IV relative to domain G. In S. aureus EF-G, this displacement is about 25 Å relative to structures of Thermus thermophilus EF-G in a direction perpendicular to that in previous observations. Part of the switch I region (residues 46-56) is ordered in a helix, and has a distinct conformation as compared with structures of EF-Tu in the GDP and GTP states. Also, the switch II region shows a new conformation, which, as in other structures of free EF-G, is incompatible with FA binding. We have analysed and discussed all known fusA-based fusidic acid resistance mutations in the light of the new structure of EF-G from S. aureus, and a recent structure of T. thermophilus EF-G in complex with the 70S ribosome with fusidic acid [Gao YG et al. (2009) Science326, 694-699]. The mutations can be classified as affecting FA binding, EF-G-ribosome interactions, EF-G conformation, and EF-G stability.


Assuntos
Antibacterianos/farmacologia , Ácido Fusídico/farmacologia , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Farmacorresistência Bacteriana/genética , Conformação Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/química , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...