Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 11(7): 753-766, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35639962

RESUMO

Human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) is extensively used in RPE research, disease modeling, and transplantation therapies. For successful outcomes, a thorough evaluation of their physiological authenticity is a necessity. Essential determinants of this are the different ion channels of the RPE, yet studies evaluating this machinery in hPSC-RPE are scarce. We examined the functionality and localization of potassium (K+) channels in the human embryonic stem cell (hESC)-derived RPE. We observed a heterogeneous pattern of voltage-gated K+ (KV) and inwardly rectifying K+ (Kir) channels. Delayed rectifier currents were recorded from most of the cells, and immunostainings showed the presence of KV1.3 channel. Sustained M-currents were also present in the hESC-RPE, and based on immunostaining, these currents were carried by KCNQ1-KCNQ5 channel types. Some cells expressed transient A-type currents characteristic of native human fetal RPE (hfRPE) and cultured primary RPE and carried by KV1.4 and KV4.2 channels. Of the highly important Kir channels, we found that Kir7.1 is present both at the apical and basolateral membranes of the hESC- and fresh native mouse RPE. Kir currents, however, were recorded only from 14% of the hESC-RPE cells with relatively low amplitudes. Compared to previous studies, our data suggest that in the hESC-RPE, the characteristics of the delayed rectifier and M-currents resemble native adult RPE, while A-type and Kir currents resemble native hfRPE or cultured primary RPE. Overall, the channelome of the RPE is a sensitive indicator of maturity and functionality affecting its therapeutic utility.


Assuntos
Células-Tronco Embrionárias Humanas , Canais de Potássio , Animais , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Canais de Potássio/metabolismo , Epitélio Pigmentado da Retina/metabolismo
2.
Stem Cells Transl Med ; 8(2): 179-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30394009

RESUMO

Retinal pigment epithelium (RPE) performs important functions for the maintenance of photoreceptors and vision. Malfunctions within the RPE are implicated in several retinal diseases for which transplantations of stem cell-derived RPE are promising treatment options. Their success, however, is largely dependent on the functionality of the transplanted cells. This requires correct cellular physiology, which is highly influenced by the various ion channels of RPE, including voltage-gated Ca2+ (CaV ) channels. This study investigated the localization and functionality of CaV channels in human embryonic stem cell (hESC)-derived RPE. Whole-cell patch-clamp recordings from these cells revealed slowly inactivating L-type currents comparable to freshly isolated mouse RPE. Some hESC-RPE cells also carried fast transient T-type resembling currents. These findings were confirmed by immunostainings from both hESC- and mouse RPE that showed the presence of the L-type Ca2+ channels CaV 1.2 and CaV 1.3 as well as the T-type Ca2+ channels CaV 3.1 and CaV 3.2. The localization of the major subtype, CaV 1.3, changed during hESC-RPE maturation co-localizing with pericentrin to the base of the primary cilium before reaching more homogeneous membrane localization comparable to mouse RPE. Based on functional assessment, the L-type Ca2+ channels participated in the regulation of vascular endothelial growth factor secretion as well as in the phagocytosis of photoreceptor outer segments in hESC-RPE. Overall, this study demonstrates that a functional machinery of voltage-gated Ca2+ channels is present in mature hESC-RPE, which is promising for the success of transplantation therapies. Stem Cells Translational Medicine 2019;8:179&15.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp/métodos , Fagocitose/fisiologia , Doenças Retinianas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...