Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 25(2): 456-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26506216

RESUMO

Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post-translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non-enzymatic methods to synthesize Ub chains of well-defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non-native linkages; however, few studies have examined the extent to which non-native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we compare the structure and function of Ub dimers bearing native and non-native linkages. Using small-angle X-ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non-native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady-state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non-native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non-native linkages can serve as surrogate substrates for explorations of Ub function.


Assuntos
Ubiquitina/química , Animais , Bases de Dados de Proteínas , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Difração de Raios X
2.
Proteins ; 84(1): 172-189, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26573747

RESUMO

Sarcomeric myosins have the remarkable ability to form regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. This has been established for over 50 years and yet a molecular model for the thick filament has not been attained. In part this is due to the lack of a detailed molecular model for the coiled-coil that constitutes the myosin rod. The ability to self-assemble resides in the C-terminal section of myosin known as light meromyosin (LMM) which exhibits strong salt-dependent aggregation that has inhibited structural studies. Here we evaluate the feasibility of generating a complete model for the myosin rod by combining overlapping structures of five sections of coiled-coil covering 164 amino acid residues which constitute 20% of LMM. Each section contains ∼ 7-9 heptads of myosin. The problem of aggregation was overcome by incorporating the globular folding domains, Gp7 and Xrcc4 which enhance crystallization. The effect of these domains on the stability and conformation of the myosin rod was examined through biophysical studies and overlapping structures. In addition, a computational approach was developed to combine the sections into a contiguous model. The structures were aligned, trimmed to form a contiguous model, and simulated for >700 ns to remove the discontinuities and achieve an equilibrated conformation that represents the native state. This experimental and computational strategy lays the foundation for building a model for the entire myosin rod.


Assuntos
Subfragmentos de Miosina/química , Sequência de Aminoácidos , Cardiomiopatias/genética , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Subfragmentos de Miosina/genética , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...