Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115158, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473685

RESUMO

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which currently lacks effective treatments. AMP-activated protein kinase (AMPK) stimulation by chalcones, a class of polyphenols abundantly found in plants, is proposed as a promising therapeutic approach for DM. This study aimed to identify novel chalcone derivatives with improved AMPK-stimulating activity in human podocytes and evaluate their mechanisms of action as well as in vivo efficacy in a mouse model of DN. Among 133 chalcone derivatives tested, the sulfonamide chalcone derivative IP-004 was identified as the most potent AMPK activator in human podocytes. Western blot analyses, intracellular calcium measurements and molecular docking simulation indicated that IP-004 activated AMPK by mechanisms involving direct binding at allosteric site of calcium-dependent protein kinase kinase ß (CaMKKß) without affecting intracellular calcium levels. Interestingly, eight weeks of intraperitoneal administration of IP-004 (20 mg/kg/day) significantly decreased fasting blood glucose level, activated AMPK in the livers, muscles and glomeruli, and ameliorated albuminuria in db/db type II diabetic mice. Collectively, this study identifies a novel chalcone derivative capable of activating AMPK in vitro and in vivo and exhibiting efficacy against hyperglycemia and DN in mice. Further development of AMPK activators based on chalcone derivatives may provide an effective treatment of DN.


Assuntos
Chalcona , Chalconas , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hiperglicemia , Camundongos , Humanos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Cálcio , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico
2.
Nat Commun ; 12(1): 2141, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837218

RESUMO

Molecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies.


Assuntos
Células Endoteliais/metabolismo , Mesângio Glomerular/metabolismo , Podócitos/metabolismo , Biossíntese de Proteínas/genética , Transcriptoma/fisiologia , Animais , Separação Celular , Biologia Computacional , Citometria de Fluxo , Heterogeneidade Genética , Mesângio Glomerular/citologia , Humanos , Masculino , Camundongos , RNA-Seq , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptores da Fosfolipase A2/genética , Análise de Célula Única , Especificidade da Espécie
3.
Dev Comp Immunol ; 89: 7-13, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071208

RESUMO

The effects of temperature on the progression of White Spot Disease (WSD) have been studied in the freshwater crayfish Pacifastacus leniusculus. In this study, we aimed to understand the reason for previously observed low mortalities with white spot syndrome virus (WSSV) infected crayfish at low temperatures. The susceptibility of freshwater crayfish to WSSV was studied at different temperatures. The mortality rate at 6 °C was zero, meanwhile the animals kept at 22 °C developed WSD symptoms and died in a few days after WSSV injections, however upon transfer of animals from 6 °C to 22 °C the mortality reached 100% indicating that the virus is not cleared at 6 °C. Moreover, the VP28 expression at 6 °C was significantly lower compared to animals kept at 22 °C. We injected animals with demecolcine, an inhibitor that arrests the cell cycle in metaphase, and observed a delayed mortality. Furthermore, the VP28 expression was found to be lower in these animals receiving both injections with WSSV and demecolcine since cell proliferation was inhibited by demecolcine. We quantified WSSV copy numbers and found that virus entry was blocked at 6 °C, but not in demecolcine treatments. We supported this result by quantifying the expression of a clip domain serine protease (PlcSP) which plays an important role for WSSV binding, and we found that the PlcSP expression was inhibited at 6 °C. Therefore, our hypothesis is that the WSSV needs proliferating cells to replicate, and an optimum temperature to enter the host hematopoietic stem cells successfully.


Assuntos
Astacoidea/virologia , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Astacoidea/imunologia , Astacoidea/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Infecções por Vírus de DNA/etiologia , Infecções por Vírus de DNA/veterinária , Demecolcina/farmacologia , Progressão da Doença , Água Doce , Expressão Gênica , Genes Virais , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Hemócitos/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Serina Proteases/genética , Temperatura , Proteínas do Envelope Viral/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia
4.
J Invertebr Pathol ; 157: 67-73, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30077692

RESUMO

Water temperature is known to affect many aspects of aquatic life including immune responses and susceptibility to diseases. In this context, we studied the effect of temperature on the defense system of the freshwater crayfish Pacifastacus leniusculus. Animals were challenged with two pathogenic Gram-negative bacteria, Aeromonas hydrophila and Pseudomonas gessardii, as well as the bacterial cell wall component lipopolysaccharide (LPS) at two different temperatures, cold (6 °C) and room temperature (22 °C). The immune responses were compared by means of differences in mortality, phagocytosis, bacterial clearance, and the melanization reaction of the hemolymph at these two temperatures. We observed that crayfish survival was higher at cold temperature. The mortality rate was zero at 6 °C following A. hydrophila or LPS injections. Furthermore, the bacteria were completely cleared from crayfish after they had been held at 6 °C for more than 9 days. We also observed a strong melanization reaction of hemolymph at 22 °C when stimulated with LPS, as well as with bacteria. Taken together, our results suggest that the cellular immunity is more effective at low temperature in this cold-adapted animal and pathogens are efficiently removed from the body by mean of phagocytosis.


Assuntos
Astacoidea/imunologia , Astacoidea/parasitologia , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Interações Hospedeiro-Parasita , Temperatura
5.
Fish Shellfish Immunol ; 68: 211-219, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28705723

RESUMO

Serine proteases are involved in many critical physiological processes including virus spread and replication. In the present study, we identified a new clip-domain serine protease (PlcSP) in the crayfish Pacifastacus leniusculus hemocytes, which can interact with the White Spot Syndrome Virus (WSSV) envelope protein VP28. It was characterized by a classic clip domain with six strictly conserved Cys residues, and contained the conserved His-Asp-Ser (H-D-S) motif in the catalytic domain. Furthermore, signal peptide prediction revealed that it has a 16-residue secretion signal peptide. Tissue distribution showed that it was mainly located in P. leniusculus hemocytes, and its expression was increased in hemocytes upon WSSV challenge. In vitro knock down of PlcSP decreased both the expression of VP28 and the WSSV copy number in hematopoietic stem (HPT) cells. Accordingly, these data suggest that the new serine protease may be of importance for WSSV infection into hematopoietic cells.


Assuntos
Proteínas de Artrópodes/metabolismo , Astacoidea/enzimologia , Astacoidea/virologia , Imunidade Inata , Serina Proteases/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Astacoidea/genética , Astacoidea/imunologia , Sequência de Bases , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Hemócitos/enzimologia , Hemócitos/virologia , Alinhamento de Sequência , Serina Proteases/química , Serina Proteases/genética , Proteínas do Envelope Viral/metabolismo
6.
EMBO Rep ; 16(12): 1664-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26412855

RESUMO

The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/imunologia , Drosophila/parasitologia , Imunidade Celular , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Animais , Citocinas/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Hemócitos/imunologia , Interações Hospedeiro-Parasita , Imunidade Inata , Janus Quinase 1/metabolismo , Janus Quinases/genética , Larva/genética , Larva/imunologia , Larva/parasitologia , Músculos/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/imunologia , Fatores de Transcrição/metabolismo , Vespas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...