Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 71(2): 439-450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449050

RESUMO

Adaptive management (AM) is often proposed as a means to resolve uncertainty in the management of socio-ecological systems but successful implementation of AM is rare. We report results from a 26 year, five-treatment, AM experiment designed to inform decision makers about the response of juvenile salmonids (Oncorhynchus spp.) to flow releases from a dam on the regulated Bridge River, British Columbia, Canada. Treatments consisted of a baseline (no dam release) and four different dam release regimes that followed a semi-natural hydrograph but varied in the magnitude of spring-summer freshet flows. We found total salmonid biomass was highest at the lowest flow release, and decreased with increasing flow, consistent with a priori predictions made by an expert solicitation process. Species-specific responses were observed that in some cases could be attributed to interactions between the flow regime and life history. The relationship between juvenile biomass and flow resulting from the experiment can inform decisions on water management for this river. The documentation of successful AM experiments is sorely needed to allow for reflection on the circumstances when AM is likely to deliver desirable outcomes, and to improve other decision processes that require fewer resources and less time to implement.


Assuntos
Ecologia , Rios , Ecossistema , Estações do Ano , Colúmbia Britânica
2.
Ecology ; 99(4): 812-821, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29465780

RESUMO

Introduced species are frequently implicated in declines of native species. In many cases, however, evidence linking introduced species to native declines is weak. Failure to make strong inferences regarding the role of introduced species can hamper attempts to predict population viability and delay effective management responses. For many species, mark-recapture analysis is the more rigorous form of demographic analysis. However, to our knowledge, there are no mark-recapture models that allow for joint modeling of interacting species. Here, we introduce a two-species mark-recapture population model in which the vital rates (and capture probabilities) of one species are allowed to vary in response to the abundance of the other species. We use a simulation study to explore bias and choose an approach to model selection. We then use the model to investigate species interactions between endangered humpback chub (Gila cypha) and introduced rainbow trout (Oncorhynchus mykiss) in the Colorado River between 2009 and 2016. In particular, we test hypotheses about how two environmental factors (turbidity and temperature), intraspecific density dependence, and rainbow trout abundance are related to survival, growth, and capture of juvenile humpback chub. We also project the long-term effects of different rainbow trout abundances on adult humpback chub abundances. Our simulation study suggests this approach has minimal bias under potentially challenging circumstances (i.e., low capture probabilities) that characterized our application and that model selection using indicator variables could reliably identify the true generating model even when process error was high. When the model was applied to rainbow trout and humpback chub, we identified negative relationships between rainbow trout abundance and the survival, growth, and capture probability of juvenile humpback chub. Effects on interspecific interactions on survival and capture probability were strongly supported, whereas support for the growth effect was weaker. Environmental factors were also identified to be important and in many cases stronger than interspecific interactions, and there was still substantial unexplained variation in growth and survival rates. The general approach presented here for combining mark-recapture data for two species is applicable in many other systems and could be modified to model abundance of the invader via other modeling approaches.


Assuntos
Oncorhynchus mykiss , Animais , Demografia , Temperatura
3.
Ecol Evol ; 4(7): 1006-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772278

RESUMO

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to understand how partial migratory populations are responding to ongoing environmental change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark-recapture data collected in 2009-2012. We compare survival and growth estimates between the Colorado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July-September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life-long residents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...