Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 115(16): 4054-62, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21434678

RESUMO

Multiresonant four wave mixing has been used to measure the coherent multidimensional spectroscopy (CMDS) of representative aromatic ring modes using pyridine as a model system. This work identifies the cross-peaks that appear between several modes and measures their coherent and incoherent dynamics. The work also explores the consequences of using multiresonant CMDS for molecules with transition moments that are typical of most vibrational modes. Typically, CMDS experiments rely on using transitions with exceptionally large transition moments. To observe cross-peaks, the pyridine concentration was raised until absorption effects became very important. These effects interfere with the parametric CMDS coherence pathways, but they do not make important contributions to the nonparametric pathways.


Assuntos
Modelos Químicos , Piridinas/química , Espectrofotometria Infravermelho , Vibração
2.
Faraday Discuss ; 150: 161-74; discussion 257-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22457947

RESUMO

The ability to detect molecular complexes and determine their geometries is crucial to our understanding of all biological phenomena, including protein structures and functions. We recently demonstrated that a novel 2DIR technique, EVV 2DIR spectroscopy, can be used for this purpose. In this paper, we evaluate the potential utility of the method for the analysis of protein composition, structure and function. In order to do this we apply computational tools to a group of selected biological systems, for which our calculated spectra all showed features that can in principle be detected with existing sensitivities. We also investigate the possibility of using our technique to detect and analyse hydrogen-bonded systems through a tyrosine-water model.


Assuntos
Elétrons , Imagem Molecular/métodos , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , 2,4-Dinitrofenol/química , 2,4-Dinitrofenol/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Candida albicans/química , Humanos , Ligação de Hidrogênio , Imunoglobulina E/química , Imunoglobulina E/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Tirosina/química , Tirosina/metabolismo , Vibração , Água/química , Água/metabolismo
3.
J Phys Chem A ; 114(2): 817-32, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19950915

RESUMO

Nuclear magnetic resonance spectroscopy relies on using multiple excitation pulses to create multiple quantum coherences that provide great specificity for chemical measurements. Coherent multidimensional spectroscopy (CMDS) is the optical analogue of NMR. Current CMDS methods use three excitation pulses and phase matching to create zero, single, and double quantum coherences. In order to create higher order multiple quantum coherences, the number of interactions must be increased by raising the excitation intensities high enough to create Rabi frequencies that are comparable to the dephasing rates of vibrational coherences. The higher Rabi frequencies create multiple, odd-order coherence pathways. The coherence pathways that involve intermediate populations are partially coherent and are sensitive to population relaxation effects. Pathways that are fully coherent involve only coherences and measure the direct coupling between excited quantum states. The fully coherent pathways are related to the multiple quantum coherences created in multiple pulse NMR methods such as heteronuclear multiple quantum coherence (HMQC) spectroscopy with the important difference that HMQC NMR methods have a defined number of interactions and avoid dynamic Stark effects whereas the multiply enhanced odd-order wave-mixing pathways do not. The difference arises because CMDS methods use phase matching to define the interactions and at high intensities, multiple pathways obey the same phase matching conditions. The multiple pathways correspond to the pathways created by dynamic Stark effects. This paper uses rhodium dicarbonyl chelate (RDC) as a model to demonstrate the characteristics of multiply enhanced odd-order wave-mixing (MEOW) methods. Dynamic Stark effects excite vibrational ladders on the symmetric and asymmetric CO stretch modes and create a series of multiple quantum coherences and populations using partially and fully coherent pathways. Vibrational quantum states up to v = 6 are excited. A series of spectra provides different two-dimensional cross sections through the multidimensional parameter space involving two excitation frequencies, the frequency of the output coherence, and the excitation pulse time delays. The spectra allow the identification of 18 different overtone and combination band states. Comparison with a local mode model with two anharmonic Morse oscillators with interbond coupling shows excellent agreement.


Assuntos
Fenômenos Químicos , Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Quelantes/química , Hexanos/química , Hidroxibutiratos/química , Pentanonas/química , Teoria Quântica , Ródio/química , Vibração
4.
J Phys Chem A ; 113(48): 13562-9, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19860444

RESUMO

Extending current coherent multidimensional spectroscopy (CMDS) methods to higher order multiwave mixing requires excitation intensities where dynamic Stark effects become important. This paper examines the dynamic Stark effects that occur in mixed frequency/time domain CMDS methods at high excitation intensities in a model system with an isolated vibrational state. The phase-matching restrictions in CMDS define the excitation beams that interact by nonlinear mixing while the dynamic Stark effects create vibrational ladders of increasingly more energetic overtone and combination band states. The excited quantum states form coherences that reemit the output beams. This paper uses the phase-matching conditions k(out) = k(1) - k(2) + k(2') and k(out) =- k(1) + k(2) + k(2'), where the subscripts denote the excitation frequencies of each excitation pulse and the output pulse. The phase-matching condition constrains each pulse to have an odd number of interactions so the overall mixing process that creates the output coherence must also involve an odd number of interactions. Tuning the excitation frequencies and spectrally resolving the output intensity creates three-dimensional spectra that resolve the individual overtone states. Changing the excitation pulse time delays measures the dynamics of the coherences and populations created by the multiple excitations. The multidimensional spectra probe the highly excited states of a molecular potential energy surface. This paper uses tungsten hexacarbonyl (W(CO)(6)) as a model for observing how dynamic Stark effects change the multidimensional spectra of a simple system. The simplicity of the W(CO)(6) system provides the experimental data required to develop the nonperturbative theoretical methods that will be necessary to model this new approach to CMDS.

5.
J Phys Chem A ; 113(36): 9792-803, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19725584

RESUMO

Mixed frequency/time domain, two color triply vibrationally enhanced (TRIVE) four wave mixing (FWM) spectroscopy is used to study the methyl and methylene modes in octane and dotriacontane. The experiments involve scanning different combinations of the two excitation frequencies, the monochromator frequency, and the two time delays between the three excitation pulses while the remaining variables are fixed. Two dimensional spectra of the methyl and methylene stretching region have weak, asymmetrical diagonal- and cross-peaks when the excitation pulses are temporally overlapped. As the time delays change, the spectra change as new peaks appear and their peak intensity and position change. Combined two-dimensional scans of the excitation frequency and time delay show the changes are caused by relaxation of the initially excited populations to other states that are coupled to the methyl and methylene stretching modes. Two dimensional time delay scans show that the coherence dephasing rates are very fast so fully coherent TRIVE FWM pathways involving multiple quantum coherences are not possible without shorter excitation pulses. Similar experiments involving the methyl and methylene bend and stretching modes identify cross-peaks between these modes and population transfer processes that create cross-peaks. The asymmetric methylene stretch/Fermi resonance band is observed to contain unresolved states that couple differently with the symmetric methylene stretching and scissor modes as well as with lower lying quantum states that are fed by population transfer. The TRIVE FWM data show that the multidimensional spectra are dominated by rapid population transfer within the methyl and methylene stretching modes and to lower quantum states that are coupled to the stretching modes.

6.
J Phys Chem A ; 113(33): 9261-5, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19507812

RESUMO

Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence.


Assuntos
Teoria Quântica , Campos Eletromagnéticos , Estudos de Viabilidade , Análise Espectral , Vibração
7.
Acc Chem Res ; 42(9): 1310-21, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19445479

RESUMO

Coherent multidimensional spectroscopy (CMDS) is now the optical analogue of nuclear magnetic resonance (NMR). Just as NMR heteronuclear multiple-quantum coherence (HMQC) methods rely on multiple quantum coherences, achieving widespread application requires that CMDS also excites multiple quantum coherences over a wide range of quantum state energies. This Account focuses on frequency-domain CMDS because these methods tune the excitation frequencies to resonance with the desired quantum states and can form multiple quantum coherences between states with very different energies. CMDS methods use multiple excitation pulses to excite multiple quantum states within their dephasing time, so their quantum mechanical phase is maintained. Coherences formed from pairs of the excited states emit coherent beams of light. The temporal ordering of the excitation pulses defines a sequence of coherences that can result in zero, single, double, or higher order coherences as required for multiple quantum coherence CMDS. Defining the temporal ordering and the excitation frequencies and spectrally resolving the output frequency also defines a particular temporal pathway for the coherences, just as an NMR pulse sequence defines an NMR method. Two dimensional contour plots through this multidimensional parameter space allow visualization of the state energies and dynamics. This Account uses nickel and rhodium chelates as models for understanding mixed frequency-/time-domain CMDS. Mixed frequency-/time-domain methods use excitation pulse widths that are comparable to the dephasing times, so multidimensional spectra are obtained by scanning the excitation frequencies, while the coherence and population dynamics are obtained by scanning the time delays. Changing the time delays changes the peaks in the 2D excitation spectra depending upon whether the pulse sequence excites zero, single, or double quantum coherences. In addition, peaks split as a result of the frequency-domain manifestation of quantum beating. Similarly, changing the excitation and monochromator frequencies changes the dependence on the excitation delay times depending upon whether the frequencies match the resonances involved in the different time-ordered pathways. Contour plots that change a time delay and frequency visualize the temporal changes of specific spectral features. Frequency-domain methods are resonant with specific states, so the sequence of coherences and populations is defined. Coherence transfer, however, can cause output beams at unexpected frequencies. Coherence transfer occurs when the thermal bath induces a coherence between two states (a and g) to evolve to a new coherence (b and g). Since the two coherences have different frequencies and since there are different time orderings for the occurrence of coherence transfer, the delay time dependence develops modulations that depend on the coherences' frequency difference. Higher order coherences can also be generated by raising the excitation intensities. New features appear in the 2D spectra and dynamic Stark splittings occur. These effects will form the basis for the higher order multiple quantum coherence methods and also provide a method for probing molecular potential energy surfaces.

8.
J Phys Chem A ; 112(28): 6320-9, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18572931

RESUMO

Triply vibrationally enhanced four-wave mixing spectroscopy is employed to observe vibrational coherence transfer between the asymmetric and symmetric CO-stretching modes of rhodium(I) dicarbonyl acetylacetonate (RDC). Coherence transfer is a nonradiative transition of a coherent superposition of quantum states to a different coherent superposition due to coupling of the vibrational modes through the bath. All three excitation pulses in the experiment are resonant with a single quantum coherence, but coherence transfer results in new coherences with different frequencies. The new output frequency is observed with a monochromator that resolves it from the stronger peak at the original excitation frequency. This technique spectrally resolves pathways that include coherence transfer, discriminates against spectral features created solely by radiative transitions, and temporally resolves modulations created by interference between different coherence transfer pathways. Redfield theory simulates the temporal modulations in the impulsive limit, but it is also clear that coherence transfer violates the secular approximation invoked in most Redfield theories. Instead, it requires non-Markovian and bath memory effects. RDC may provide a simple model for the development of theories that incorporate these effects.


Assuntos
Compostos Organometálicos/química , Análise Espectral/métodos , Cor , Transferência de Energia , Teoria Quântica , Análise Espectral/instrumentação , Tempo , Vibração
9.
J Phys Chem A ; 111(30): 6999-7005, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17628051

RESUMO

Coherent multidimensional spectroscopy performed in the mixed frequency/time domain exhibits both temporal and spectral quantum beating when two quantum states are simultaneously excited. The excitation of both quantum states can occur because either the spectral width of the states or the excitation pulse exceeds the frequency separation of the quantum states. The quantum beating appears as a line that broadens and splits into two peaks and then recombines as the time delay between excitation pulses increases. The splitting depends on the spectral width of the excitation pulses. We observe the spectral quantum beating between the two nearly degenerate asymmetric carbonyl stretch modes in a nickel tricarbonyl chelate using the nonrephasing, ground state bleaching coherence pathway in triply vibrationally enhanced four-wave mixing as the time delay between the first two excitation pulses changes.


Assuntos
Quelantes/química , Teoria Quântica , Análise Espectral , Simulação por Computador , Modelos Moleculares , Níquel/química , Fatores de Tempo
10.
J Phys Chem A ; 111(7): 1163-6, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17300169

RESUMO

Frequency-domain two-color triply vibrational enhanced four-wave mixing using a new phase-matching geometry discriminates against coherent multidimensional spectral features created solely by radiative transitions, spectrally resolves pathways with different numbers of coherence transfer steps, and temporally resolves modulations created by interference between coherence transfer pathways. Coherence transfer is a nonradiative transition where a superposition of quantum states evolves to a different superposition. The asymmetric and symmetric C[triple bond]O stretching modes of rhodium(I) dicarbonyl acetylacetonate are used as a model system for coherence transfer. A simplified theoretical model based on Redfield theory is used to describe the experimental results.


Assuntos
Análise Espectral/métodos , Modelos Moleculares , Conformação Molecular , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...