Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 211: 113005, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248850

RESUMO

PURPOSE: Among all genetic mutations of LRRK2, the G2019S mutation is the most commonly associated with the late-onset of Parkinson's disease (PD). Hence, one potential therapeutic approach is to block the hyperactivity of mutated LRRK2 induced by kinase inhibition. To date, only a few LRRK2 kinase inhibitors have been tested for in vivo quantification of target engagement by positron emission tomography (PET). In this study, we performed biological evaluations of two radiolabeled kinase inhibitors i.e. [18F]FMN3PA (14) and [18F]FMN3PU for LRRK2 (15). PROCEDURES: Radiosyntheses of [18F]FMN3PA (14) and [18F]FMN3PU (15) were performed using K[18F]-F-K222 complex in a TRACERlab FXN module and purification was carried out via C18 plus (Sep-Pak) cartridges. In vitro specific binding assays were performed in rat brain striatum and kidney tissues using GNE-0877 as a blocking agent (Ki = 0.7 nM). For in vivo blocking, 3 mg/kg of GNE-0877 was injected 30 min before radiotracer injection via tail vein in wild-type (WT) mice (n = 4). Dynamic scans by PET/CT (Siemens Inveon) were performed in WT mice (n = 3). RESULTS: Radiofluorinations resulted in radiochemical yields (RCYs) of 25 ± 1.3% (n = 6) ([18F]FMN3PU, 15) and 37 ± 1.6% (n = 6) ([18F]FMN3PA, 14) with ≥96% radiochemical purity (RCP) and a molar activity (MA) of 3.55 ± 1.6 Ci/µmol (131 ± 56 GBq/µmol) for [18F]FMN3PU (15) and 4.57 ± 1.7 Ci/µmol (169 ± 63 GBq/µmol) for [18F]FMN3PA (14), respectively. Saturation assays showed high specific binding for rat brain striatum with Kd 20 ± 1.3 nM ([18F]FMN3PA, 14) and 23.6 ± 4.0 nM ([18F]FMN3PU, 15). In vivo blocking data for [18F]FMN3PA (14) was significant for brain (p < 0.0001, 77% blocking) and kidney (p = 0.0041, 65% blocking). PET images showed uptake in mouse brain striatum. CONCLUSION: In the presence of GNE-0877 as a blocking agent, the specific binding of [18F]FMN3PA (14) and [18F]FMN3PU (15) was significant in vitro. [18F]FMN3PA (14) showed good brain uptake in vivo, though fast clearance from brain was observed (within 10-15 min).


Assuntos
Desenvolvimento de Medicamentos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual
2.
Med Phys ; 44(8): 4056-4067, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28444763

RESUMO

PURPOSE: Mn2+ is used as a contrast agent and marker for neuronal activity with magnetic resonance imaging (MRI) in rats and mice, but its accumulation is generally not assessed quantitatively. In this work, nonradioactive Mn and 52 Mn are injected simultaneously in rats, and imaged with MRI, positron emission tomography (PET) and autoradiography (AR). Mn distributions are compared between modalities, to assess the potential and limitations on quantification of Mn with MRI, and to investigate the potential of multimodal measurement of Mn accumulation. METHODS: MRI (in vivo), PET (in vivo and post mortem), and AR (ex vivo) were acquired of rat brains, for which animals received simultaneous intraperitoneal (IP) or intracerebrovertricular (ICV)-targeted injections containing the positron-emitting radionuclide 52 Mn and additional nonradioactive MnCl2 , which acts as an MRI contrast agent. Pre and postinjection MR images were fit for the longitudinal relaxation rate (R1), coregistered, and subtracted to generate R1 difference maps, which are expected to be proportional to change in Mn concentration in tissue. AR and PET images were coregistered to smoothed R1 difference maps. RESULTS: Similar spatial distributions were seen across modalities, with Mn accumulation in the colliculus, near the injection site, and in the 4th ventricle. There was no 52 Mn accumulation measurable with PET in the brain after IP injection. In areas of very highly localized and concentrated 52 Mn accumulation in PET or AR, consistent increases of R1 were not seen with MRI. Scatter plots of corresponding voxel R1 difference and PET or AR signal intensity were generated and fit with least squares linear models within anatomical regions. Linear correlations were observed, particularly in regions away from very highly localized and concentrated Mn accumulation at the injection site and the 4th ventricle. Accounting for radioactive decay of 52 Mn, the MnCl2 longitudinal relaxivity was between 4.0 and 5.1 s-1 /mM, which is within 22% of the in vitro relaxivity. CONCLUSIONS: This proof-of-concept study demonstrates that MR has strong potential for quantitative assessment of Mn accumulation in the brain, although local discrepancies from linear correlation suggest limitations to this use of MR in areas of inflammation or very high concentrations of Mn. These discrepancies also suggest that a combination of modalities may have additional utility for discriminating between different pools of Mn accumulation in tissue.


Assuntos
Autorradiografia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Encéfalo , Manganês , Ratos
3.
J Cereb Blood Flow Metab ; 35(8): 1331-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25833342

RESUMO

Neuroinflammation in the aging rat brain was investigated using [(11)C]PBR28 microPET (positron emission tomography) imaging. Normal rats were studied alongside LRRK2 p.G2019S transgenic rats; this mutation increases the risk of Parkinson's disease in humans. Seventy [(11)C]PBR28 PET scans were acquired. Arterial blood sampling enabled tracer kinetic modeling and estimation of VT. In vitro autoradiography was also performed. PBR28 uptake increased with age, without differences between nontransgenic and transgenic rats. In 12 months of aging (4 to 16 months), standard uptake value (SUV) increased by 56% from 0.44 to 0.69 g/mL, whereas VT increased by 91% from 30 to 57 mL/cm(3). Standard uptake value and VT were strongly correlated (r = 0.52, 95% confidence interval (CI) = 0.31 to 0.69, n = 37). The plasma free fraction, fp, was 0.21 ± 0.03 (mean ± standard deviation, n = 53). In vitro binding increased by 19% in 16 months of aging (4 to 20 months). The SUV was less variable across rats than VT; coefficients of variation were 13% (n = 27) and 29% (n = 12). The intraclass correlation coefficient for SUV was 0.53, but was effectively zero for VT. These data show that [(11)C]PBR28 brain uptake increases with age, implying increased microglial activation in the aged brain.


Assuntos
Acetamidas/farmacologia , Acetamidas/farmacocinética , Envelhecimento , Encéfalo , Microglia , Tomografia por Emissão de Pósitrons , Piridinas/farmacologia , Piridinas/farmacocinética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Isótopos de Carbono/farmacocinética , Isótopos de Carbono/farmacologia , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Masculino , Microglia/diagnóstico por imagem , Microglia/metabolismo , Radiografia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
4.
J Parkinsons Dis ; 4(3): 483-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000966

RESUMO

BACKGROUND: A major risk-factor for developing Parkinson's disease (PD) is genetic variability in leucine-rich repeat kinase 2 (LRRK2), most notably the p.G2019S mutation. Examination of the effects of this mutation is necessary to determine the etiology of PD and to guide therapeutic development. OBJECTIVE: Assess the behavioral consequences of LRRK2 p.G2019S overexpression in transgenic rats as they age and test the functional integrity of the nigro-striatal dopamine system. Conduct positron emission tomography (PET) neuroimaging to compare transgenic rats with previous data from human LRRK2 mutation carriers. METHODS: Rats overexpressing human LRRK2 p.G2019S were generated by BAC transgenesis and compared to non-transgenic (NT) littermates. Motor skill tests were performed at 3, 6 and 12 months-of-age. PET, performed at 12 months, assessed the density of dopamine and vesicular monoamine transporters (DAT and VMAT2, respectively) and measured dopamine synthesis, storage and availability. Brain tissue was assayed for D2, DAT, dopamine and cAMP-regulated phosphoprotein (DARPP32) and tyrosine hydroxylase (TH) expression by Western blot, and TH by immunohistochemistry. RESULTS: Transgenic rats had no abnormalities in measures of striatal dopamine function at 12 months. A behavioral phenotype was present, with LRRK2 p.G2019S rats performing significantly worse on the rotarod than non-transgenic littermates (26% reduction in average running duration at 6 months), but with normal performance in other motor tests. CONCLUSIONS: Neuroimaging using dopaminergic PET did not recapitulate prior studies in human LRRK2 mutation carriers. Consistently, LRRK2 p.G2019S rats do not develop overt neurodegeneration; however, they do exhibit behavioral abnormalities.


Assuntos
Modelos Animais de Doenças , Dopamina/metabolismo , Atividade Motora/genética , Neostriado/metabolismo , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Neostriado/diagnóstico por imagem , Fosforilação , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Dopamina D2/metabolismo , Teste de Desempenho do Rota-Rod , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
5.
EJNMMI Res ; 3(1): 69, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088510

RESUMO

BACKGROUND: [18 F]fluorodopa (FDOPA) positron emission tomography (PET) allows assessment of levodopa (LDOPA) metabolism and is widely used to study Parkinson's disease. We examined how [18 F]FDOPA PET-derived kinetic parameters relate the dopamine (DA) and DA metabolite content of extracellular fluid measured by microdialysis to aid in the interpretation of data from both techniques. METHODS: [18 F]FDOPA PET imaging and microdialysis measurements were performed in unilaterally 6-hydroxydopamine-lesioned rats (n = 8) and normal control rats (n = 3). Microdialysis testing included baseline measurements and measurements following acute administration of LDOPA. PET imaging was also performed using [11C]dihydrotetrabenazine (DTBZ), which is a ligand for the vesicular monoamine transporter marker and allowed assessment of denervation severity. RESULTS: The different methods provided highly correlated data. Lesioned rats had reduced DA metabolite concentrations ipsilateral to the lesion (p < 0.05 compared to controls), with the concentration being correlated with FDOPA's effective distribution volume ratio (EDVR; r = 0.86, p < 0.01) and DTBZ's binding potential (BPND; r = 0.89, p < 0.01). The DA metabolite concentration in the contralateral striatum of severely (>80%) lesioned rats was lower (p < 0.05) than that of less severely lesioned rats (<80%) and was correlated with the ipsilateral PET measures (r = 0.89, p < 0.01 for BPND) but not with the contralateral PET measures. EDVR and BPND in the contralateral striatum were not different from controls and were not correlated with the denervation severity. CONCLUSIONS: The demonstrated strong correlations between the PET and microdialysis measures can aid in the interpretation of [18 F]FDOPA-derived kinetic parameters and help compare results from different studies. The contralateral striatum was affected by the lesioning and so cannot always serve as an unaffected control.

6.
J Cereb Blood Flow Metab ; 33(1): 59-66, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22929441

RESUMO

Longitudinal measurements of dopamine (DA) uptake and turnover in transgenic rodents may be critical when developing disease-modifying therapies for Parkinson's disease (PD). We demonstrate methodology for such measurements using [(18)F]fluoro-3,4-dihydroxyphenyl-L-alanine ([(18)F]FDOPA) positron emission tomography (PET). The method was applied to 6-hydroxydopamine lesioned rats, providing the first PET-derived estimates of DA turnover for this species. Control (n=4) and unilaterally lesioned (n=11) rats were imaged multiple times. Kinetic modeling was performed using extended Patlak, incorporating a k(loss) term for metabolite washout, and modified Logan methods. Dopaminergic terminal loss was measured via [(11)C]-(+)-dihydrotetrabenazine (DTBZ) PET. Clear striatal [(18)F]FDOPA uptake was observed. In the lesioned striatum the effective DA turnover increased, shown by a reduced effective distribution volume ratio (EDVR) for [(18)F]FDOPA. Effective distribution volume ratio correlated (r>0.9) with the [(11)C]DTBZ binding potential (BP(ND)). The uptake and trapping rate (k(ref)) decreased after lesioning, but relatively less so than [(11)C]DTBZ BP(ND). For normal controls, striatal estimates were k(ref)=0.037±0.005 per minute, EDVR=1.07±0.22 and k(loss)=0.024±0.003 per minute (30 minutes turnover half-time), with repeatability (coefficient of variation) ≤11%. [(18)F]fluoro-3,4-dihydroxyphenyl-L-alanine PET enables measurements of DA turnover in the rat, which is useful for developing novel therapies for PD.


Assuntos
Corpo Estriado/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Dopamina/metabolismo , Transtornos Parkinsonianos/metabolismo , Tomografia Computadorizada de Emissão/métodos , Animais , Corpo Estriado/diagnóstico por imagem , Di-Hidroxifenilalanina/farmacocinética , Modelos Animais de Doenças , Radioisótopos de Flúor , Masculino , Oxidopamina/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
7.
Synapse ; 64(3): 200-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19862685

RESUMO

Small animal positron emission tomography (PET) imaging allows in vivo quantification of lesion- or treatment-induced neurochemical changes in animal models of disease. Important for quantification are the kinetic modeling methods used to determine biologically-relevant parameters of tracer-tissue interaction. In this work, we evaluate modeling algorithms for the dopaminergic tracers (11)C-dihydrotetrabenazine (DTBZ), (11)C-methylphenidate (MP), and (11)C-raclopride (RAC), used to image the dopaminergic system in the unilateral 6-hydroxydopamine lesioned rat model of Parkinson's disease. For the presynaptic tracers, PET measures are compared with autoradiographic binding measurements using DTBZ and [(3)H]WIN 35,428 (WIN). We independently developed a new variant of the tissue-input Logan graphical modeling method, and compared its performance with the simplified Logan graphical method and the simplified reference tissue with basis functions method (SRTM), for region of interest (ROI) averaged time activity curves (TACs) and parametric imaging. The modified graphical method was found to be effectively unbiased by target tissue noise and has advantages for parametric imaging, while all tested methods were equivalent for ROI-averaged data.


Assuntos
Encéfalo/diagnóstico por imagem , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Animais , Autorradiografia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador , Modelos Neurológicos , Oxidopamina/farmacologia , Ratos , Ratos Sprague-Dawley , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...