Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1318: 355-368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33973189

RESUMO

During the COVID-19 pandemic associated with high incidence, transmissibility, and mortality, this chapter focuses on three phases of the disease: initial exposure, initiation of the immune response to the agent, and finally, an inflammatory/autoimmune-like presentation with pulmonary, neurological, and renal failure and disseminated intravascular coagulation which occurs in a small proportion of the patients. The elegant demonstration of the site of interaction between the spike (S) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of COVID-19, and the ACE (angiotensin-converting enzyme) 2 receptor of cells distributed throughout the body has enabled research efforts to develop pharmacological and immune countermeasures to the viral phase of the disease. This chapter rapidly reviews the molecular and structural organization of SARS-CoV-2 and its interaction with ACE2. It is followed by a discussion over the role of the major histocompatibility complex (MHC) in recognition of the virus. The importance of rapid compartmentation of the viral genome into the target cells as opposed to the binding constant of the virus for the ACE receptor is discussed. Host factors affecting the immune response to the virus are examined, and the subsequent inflammatory dysregulation enabling the cytokine storm leading to system organ failure is described. Finally, the similarities of the clinical effects of the murine hepatitis virus-JHM (a coronavirus) on multi-organ systems (liver, brain, clotting cascade) as described by Perlman and colleagues permit insights regarding the role of the interaction between the host and the virus in developing the clinical presentation of the inflammatory/autoimmune disorders that occur in multiple sclerosis, neuromyelitis optica, and more interestingly, during the third phase of COVID-19.


Assuntos
COVID-19 , Pandemias , Animais , Humanos , Pulmão , Camundongos , Peptidil Dipeptidase A/genética , SARS-CoV-2
2.
Front Neurol ; 11: 998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013659

RESUMO

Traumatic brain injury (TBI) has become a concern in sports, automobile accidents and combat operations. A better understanding of the mechanics leading to a TBI is required to cope with both the short-term life-threatening effects and long-term effects of TBIs, such as the development chronic traumatic encephalopathy (CTE). Kornguth et al. (1) proposed that an inflammatory and autoimmune process initiated by a water hammer effect at the bases of the sulci of the brain is a mechanism of TBI leading to CTE. A major objective of this study is to investigate whether the water hammer effect is present due to blunt impacts through the use of computational models. Frontal blunt impacts were simulated with 2D finite element models developed to capture the biofidelic geometry of a human head. The models utilized the Arbitrary Lagrangian Eulerian (ALE) method to model a layer of cerebrospinal fluid (CSF) as a deforming fluid allowing for CSF to move in and out of sulci. During the simulated impacts, CSF was not observed to be driven into the sulci during the transient response. However, elevated shear strain levels near the base of the sulci were exhibited. Further, increased shear strain was present when differentiation between white and gray matter was taken into account. Both of the results support clinical observations of (1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...