Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2019: 1523140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214275

RESUMO

Recently, metabolic syndrome (MS) has gained attention in human and animal metabolic medicine. Insulin resistance, inflammation, hyperleptinemia, and hyperinsulinemia are critical to its definition. MS is a complex cluster of metabolic risk factors that together exert a wide range of effects on multiple organs, tissues, and cells in the body. Adipose stem cells (ASCs) are multipotent stem cell population residing within the adipose tissue that is inflamed during MS. Studies have indicated that these cells lose their stemness and multipotency during MS, which strongly reduces their therapeutic potential. They suffer from oxidative stress, apoptosis, and mitochondrial deterioration. Thus, the aim of this study was to rejuvenate these cells in vitro in order to improve their chondrogenic differentiation effectiveness. Pharmacotherapy of ASCs was based on resveratrol and 5-azacytidine pretreatment. We evaluated whether those substances are able to reverse aged phenotype of metabolic syndrome-derived ASCs and improve their chondrogenic differentiation at its early stage using immunofluorescence, transmission and scanning electron microscopy, real-time PCR, and flow cytometry. Obtained results indicated that 5-azacytidine and resveratrol modulated mitochondrial dynamics, autophagy, and ER stress, leading to the enhancement of chondrogenesis in metabolically impaired ASCs. Therefore, pretreatment of these cells with 5-azacytidine and resveratrol may become a necessary intervention before clinical application of these cells in order to strengthen their multipotency and therapeutic potential.


Assuntos
Autofagia/efeitos dos fármacos , Azacitidina/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/patologia , Síndrome Metabólica/fisiopatologia , Mitocôndrias/metabolismo , Resveratrol/farmacologia , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Condrogênese , Feminino , Citometria de Fluxo , Doenças dos Cavalos , Cavalos , Humanos , Masculino , Síndrome Metabólica/terapia , Microscopia Eletrônica , Nicho de Células-Tronco
2.
Mater Sci Eng C Mater Biol Appl ; 99: 1257-1273, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889661

RESUMO

Lithium (Li+) ion due to its excellent bioactivity is one of the most well-studied element in bone-tissue engineering. In this study, we fabricated nanohydroxyapatite (nHAp) doped with Li+ ions (5 mol% Li+:nHAp) and co-doped with lanthanide ions. We investigated the effects of nHAp, 5 mol% Li+:nHAp or Li+ alone, on osteogenic differentiation of human Adipose Tissue-derived Stem Cells (hASCs), their proliferation, mitochondrial dynamics and apoptosis. Moreover, we monitored cell proliferation after treatment with samarium (III) (Sm3+) and europium (III) (Eu3+) ions co-doped 5 mol% Li+:nHAp as well as their luminescent property. The hASCs treated with 5 mol% Li+:nHAp and Li+ ions proliferated more rapidly and differentiated effectively than control cells without undergoing apoptosis. Both, 5 mol% Li+:nHAp and Li+ ions improved osteogenic differentiation of hASCs. Moreover they decreased expression of glycogen synthase kinase 3ß (GSK3ß) while increased ß-catenin mRNA level. In addition, Li+, nHAp and 5 mol% Li+:nHAp improved mitochondrial dynamics and enhanced expression of neural differentiation marker genes. Collectively, the study indicates on pro-osteogenic and anti-apoptotic properties of nHAp doped with Li+ and Li+ alone. Moreover, unique properties of 5 mol% Li+:nHAp and 5 mol% Li+:nHAp co-doped with rare earth ions, such as Sm3+ and Eu3+ have shed a promising light on their potential application in theranostics.


Assuntos
Durapatita/química , Európio/farmacologia , Lítio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Samário/farmacologia , Nanomedicina Teranóstica , Apoptose , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Íons , Leptina/genética , Leptina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Nanopartículas/ultraestrutura , Nestina/genética , Nestina/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Osteogênese/genética , Osteopontina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Stem Cell Rev Rep ; 14(6): 785-792, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225821

RESUMO

Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.


Assuntos
Regeneração Óssea , Sistemas de Liberação de Medicamentos/métodos , Magnetoterapia/métodos , Nanopartículas/uso terapêutico , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Cicatrização , Animais , Humanos , Magnetoterapia/tendências , Campos Magnéticos , Medicina Regenerativa/tendências , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...