Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(15): 24161-24168, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614666

RESUMO

Short wavelength high-harmonic sources are undergoing intense development for applications in spectroscopy and microscopy. Despite recent progress in peak and average power, spatial control over coherent extreme ultraviolet (XUV) beams remains a formidable challenge due to the lack of suitable optical elements for beam shaping and control. Here we demonstrate a robust and precise approach that structures XUV high-order harmonics in space as they are emitted from a nanostructured MgO crystal. Our demonstration paves the way for bridging the numerous applications of shaped light beams from the visible to the short wavelengths, with potential uses for applications in microscopy and nanoscale machining.

2.
Nat Commun ; 12(1): 4981, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404794

RESUMO

High-harmonic generation is a cornerstone of nonlinear optics. It has been demonstrated in dielectrics, semiconductors, semi-metals, plasmas, and gases, but, until now, not in metals. Here we report high harmonics of 800-nm-wavelength light irradiating metallic titanium nitride film. Titanium nitride is a refractory metal known for its high melting temperature and large laser damage threshold. We show that it can withstand few-cycle light pulses with peak intensities as high as 13 TW/cm2, enabling high-harmonics generation up to photon energies of 11 eV. We measure the emitted vacuum ultraviolet radiation as a function of the crystal orientation with respect to the laser polarization and show that it is consistent with the anisotropic conduction band structure of titanium nitride. The generation of high harmonics from metals opens a link between solid and plasma harmonics. In addition, titanium nitride is a promising material for refractory plasmonic devices and could enable compact vacuum ultraviolet frequency combs.

3.
Opt Express ; 29(8): 11845-11853, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984957

RESUMO

We present a novel approach to single-shot characterization of the spectral phase of broadband laser pulses. Our method is inexpensive, insensitive to alignment and combines the simplicity and robustness of the dispersion scan technique, that does not require spatio-temporal pulse overlap, with the advantages of single-shot pulse characterization methods such as single-shot frequency-resolved optical gating at a real-time reconstruction rate of several Hz.

4.
Opt Express ; 27(22): 32630-32637, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684471

RESUMO

We used two 800 nm laser pulses propagating in the opposite directions, to drive the emission of high-order vacuum ultra-violet harmonics off of the surface of an MgO (100) single crystal. We demonstrated the advantages that our approach provides compared to a single beam geometry, in both forward and backward emission.

5.
Nat Commun ; 10(1): 2020, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043591

RESUMO

Strong field laser physics has primarily been concerned with controlling beams in time while keeping their spatial profiles invariant. In the case of high harmonic generation, the harmonic beam is the result of the coherent superposition of atomic dipole emissions. Therefore, fundamental beams can be tailored in space, and their spatial characteristics will be imparted onto the harmonics. Here we produce high harmonics using a space-varying polarized fundamental laser beam, which we refer to as a vector beam. By exploiting the natural evolution of a vector beam as it propagates, we convert the fundamental beam into high harmonic radiation at its focus where the polarization is primarily linear. This evolution results in circularly polarized high harmonics in the far field. Such beams will be important for ultrafast probing of magnetic materials.

6.
J Chem Phys ; 147(12): 124202, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28964029

RESUMO

We use an optical centrifuge to excite coherent rotational wave packets in N2O, OCS, and CS2 molecules with rotational quantum numbers reaching up to J≈465, 690, and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at internuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.

7.
Phys Rev Lett ; 118(24): 243201, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665658

RESUMO

Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

8.
Phys Rev Lett ; 116(18): 183001, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203318

RESUMO

We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.

9.
Phys Rev Lett ; 115(3): 033005, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230789

RESUMO

We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. An optical centrifuge is used to create dense ensembles of oxygen molecules in ultrahigh rotational states. In is shown, for the first time, that the gas of rotating molecules becomes optically birefringent in the presence of a magnetic field. The discovered effect of "magneto-rotational birefringence" indicates the preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations.

10.
Opt Express ; 23(7): 8603-8, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968698

RESUMO

We use an optical centrifuge to deposit a controllable amount of rotational energy into dense molecular ensembles. Subsequent rotation-translation energy transfer, mediated by thermal collisions, results in the localized heating of the gas and generates strong sound wave, clearly audible to the unaided ear. For the first time, the amplitude of the sound signal is analyzed as a function of the experimentally measured rotational energy and linear proportionality between the two observables is established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...