Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 203(3): E78-E91, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358806

RESUMO

AbstractNumerous empirical studies have witnessed an increase in meiotic recombination rate in response to physiological stress imposed by unfavorable environmental conditions. Thus, inherited plasticity in recombination rate is hypothesized to be evolutionarily advantageous in changing environments. Previous theoretical models proceeded from the assumption that organisms increase their recombination rate when the environment becomes more stressful and demonstrated the evolutionary advantage of such a form of plasticity. Here, we numerically explore a complementary scenario-when the plastic increase in recombination rate is triggered by the environmental shifts. Specifically, we assume increased recombination in individuals developing in a different environment than their parents and, optionally, also in offspring of such individuals. We show that such shift-inducible recombination is always superior when the optimal constant recombination implies an intermediate rate. Moreover, under certain conditions, plastic recombination may also appear beneficial when the optimal constant recombination is either zero or free. The advantage of plastic recombination was better predicted by the range of the population's mean fitness over the period of environmental fluctuations, compared with the geometric mean fitness. These results hold for both panmixia and partial selfing, with faster dynamics of recombination modifier alleles under selfing. We think that recombination plasticity can be acquired under the control of environmentally responsive mechanisms, such as chromatin epigenetics remodeling.


Assuntos
Evolução Biológica , Recombinação Genética , Humanos , Estresse Fisiológico , Alelos
2.
Bioessays ; 45(8): e2200237, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246937

RESUMO

Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.


Assuntos
Eucariotos , Recombinação Genética , Estudos Prospectivos , Meiose/genética , Evolução Biológica , Seleção Genética
3.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142488

RESUMO

The objectives of this study were to identify genetic loci in the bread wheat genome that would influence yield stability and quality under water stress, and to identify accessions that can be recommended for cultivation in dry and hot regions. We performed a genome-wide association study (GWAS) using a panel of 232 wheat accessions spanning diverse ecogeographic regions. Plants were evaluated in the Israeli Northern Negev, under two environments: water-limited (D; 250 mm) and well-watered (W; 450 mm) conditions; they were genotyped with ~71,500 SNPs derived from exome capture sequencing. Of the 14 phenotypic traits evaluated, 12 had significantly lower values under D compared to W conditions, while the values for two traits were higher under D. High heritability (H2 = 0.5-0.9) was observed for grain yield, spike weight, number of grains per spike, peduncle length, and plant height. Days to heading and grain yield could be partitioned based on accession origins. GWAS identified 154 marker-trait associations (MTAs) for yield and quality-related traits, 82 under D and 72 under W, and identified potential candidate genes. We identified 24 accessions showing high and/or stable yields under D conditions that can be recommended for cultivation in regions under the threat of global climate change.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Pão , Grão Comestível/genética , Genômica , Fenótipo , Locos de Características Quantitativas , Triticum/genética
4.
Pathogens ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832684

RESUMO

In the original article, there was a mistake published in Figure 3 [...].

5.
Pathogens ; 10(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34358051

RESUMO

Antagonistic interactions and co-evolution between a host and its parasite are known to cause oscillations in the population genetic structure of both species (Red Queen dynamics). Potentially, such oscillations may select for increased sex and recombination in the host, although theoretical models suggest that this happens under rather restricted values of selection intensity, epistasis, and other parameters. Here, we explore a model in which the diploid parasite succeeds to infect the diploid host only if their phenotypes at the interaction-mediating loci match. Whenever regular oscillations emerge in this system, we test whether plastic, pathogen-inducible recombination in the host can be favored over the optimal constant recombination. Two forms of the host recombination dependence on the parasite pressure were considered: either proportionally to the risk of infection (prevention strategy) or upon the fact of infection (remediation strategy). We show that both forms of plastic recombination can be favored, although relatively infrequently (up to 11% of all regimes with regular oscillations, and up to 20% of regimes with obligate parasitism). This happens under either strong overall selection and high recombination rate in the host, or weak overall selection and low recombination rate in the host. In the latter case, the system's dynamics are considerably more complex. The prevention strategy is favored more often than the remediation one. It is noteworthy that plastic recombination can be favored even when any constant recombination is rejected, making plasticity an evolutionary mechanism for the rescue of host recombination.

6.
J Theor Biol ; 528: 110849, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34331961

RESUMO

Meiotic recombination and the factors affecting its rate and fate in nature have inspired many studies in theoretical evolutionary biology. Classical theoretical models have inferred that recombination can be favored under a rather restricted parameter range. Thus, the ubiquity of recombination in nature remains an open question. However, these models assumed constant recombination with an equal rate across all individuals within the population, whereas empirical evidence suggests that recombination may display certain sensitivity to ecological stressors and/or genotype fitness. Models assuming condition-dependent recombination show that such a strategy can often be favored over constant recombination. Moreover, in our recent model with panmictic populations subjected to purifying selection, fitness-dependent recombination was quite often favored even when any constant recombination was rejected. By using numerical modeling, we test whether such a 'recombination-rescuing potential' of fitness dependence holds also beyond panmixia, given the recognized effect of mating strategy on the evolution of recombination. We show that deviations from panmixia generally increase the recombination-rescuing potential of fitness dependence, with the strongest effect under intermediate selfing or high clonality. We find that under partial clonality, the evolutionary advantage of fitness-dependent recombination is determined mostly by selection against heterozygotes and additive-by-additive epistasis, while under partial selfing, additive-by-dominance epistasis is also a driver.


Assuntos
Modelos Genéticos , Reprodução , Genótipo , Heterozigoto , Humanos
7.
Heredity (Edinb) ; 127(3): 278-287, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34163036

RESUMO

Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8-10 generations).


Assuntos
Drosophila melanogaster , Drosophila , Adaptação Fisiológica , Animais , Drosophila melanogaster/genética , Recombinação Genética , Estações do Ano
8.
Ecol Evol ; 10(4): 2074-2084, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128139

RESUMO

Recombination's omnipresence in nature is one of the most intriguing problems in evolutionary biology. The question of why recombination exhibits certain general features is no less interesting than that of why it exists at all. One such feature is recombination's fitness dependence (FD). The so far developed population genetics models have focused on the evolution of FD recombination mainly in haploids, although the empirical evidence for this phenomenon comes mostly from diploids. Using numerical analysis of modifier models for infinite panmictic populations, we show here that FD recombination can be evolutionarily advantageous in diploids subjected to purifying selection. We ascribe this advantage to the differential rate of disruption of lower- versus higher-fitness genotypes, which can be manifested in selected systems with at least three loci. We also show that if the modifier is linked to such selected system, it can additionally benefit from modifying this linkage in a fitness-dependent manner. The revealed evolutionary advantage of FD recombination appeared robust to crossover interference within the selected system, either positive or negative. Remarkably, FD recombination was often favored in situations where any constant nonzero recombination was evolutionarily disfavored, implying a relaxation of the rather strict constraints on major parameters (e.g., selection intensity and epistasis) required for the evolutionary advantage of nonzero recombination formulated by classical models.

9.
Theor Appl Genet ; 133(1): 119-131, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31562566

RESUMO

KEY MESSAGE: Genetic dissection of GPC and TKW in tetraploid durum × WEW RIL population, based on high-density SNP genetic map, revealed 12 GPC QTLs and 11 TKW QTLs, with favorable alleles for 11 and 5 QTLs, respectively, derived from WEW. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW) was shown to exhibit high grain protein content (GPC) and therefore possess a great potential for improvement of cultivated wheat nutritional value. Genetic dissection of thousand kernel weight (TKW) and grain protein content (GPC) was performed using a high-density genetic map constructed based on a recombinant inbred line (RIL) population derived from a cross between T. durum var. Svevo and WEW acc. Y12-3. Genotyping of 208 F6 RILs with a 15 K wheat single nucleotide polymorphism (SNP) array yielded 4166 polymorphic SNP markers, of which 1510 were designated as skeleton markers. A total map length of 2169 cM was obtained with an average distance of 1.5 cM between SNPs. A total of 12 GPC QTLs and 11 TKW QTLs were found under five different environments. No significant correlations were found between GPC and TKW across all environments. Four major GPC QTLs with favorable alleles from WEW were found on chromosomes 4BS, 5AS, 6BS and 7BL. The 6BS GPC QTL coincided with the physical position of the NAC transcription factor TtNAM-B1, underlying the cloned QTL, Gpc-B1. Comparisons of the physical intervals of the GPC QTLs described here with the results previously reported in other durum × WEW RIL population led to the discovery of seven novel GPC QTLs. Therefore, our research emphasizes the importance of GPC QTL dissection in diverse WEW accessions as a source of novel alleles for improvement of GPC in cultivated wheat.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Meio Ambiente , Proteínas de Grãos/metabolismo , Locos de Características Quantitativas/genética , Sementes/genética , Triticum/genética , Análise de Variância , Cromossomos de Plantas/genética , Endogamia , Escore Lod
10.
Plant J ; 101(3): 555-572, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571297

RESUMO

Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.


Assuntos
Fósforo/metabolismo , Locos de Características Quantitativas/genética , Enxofre/metabolismo , Triticum/genética , Cruzamento , Grão Comestível , Fenótipo , Sementes/genética , Sementes/fisiologia , Triticum/fisiologia
11.
Genetica ; 147(3-4): 291-302, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240599

RESUMO

Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.


Assuntos
Troca Genética , Drosophila melanogaster/genética , Adaptação Fisiológica/genética , Animais , Centrômero/genética , Dessecação , Ontologia Genética , Aptidão Genética/fisiologia , Variação Genética/fisiologia
12.
Nat Commun ; 9(1): 3735, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282993

RESUMO

Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes de Plantas/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Triticum/fisiologia , Animais , Mapeamento Cromossômico , Evolução Molecular , Hordeum/genética , Janus Quinases/genética , Mutagênese , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Triticum/microbiologia
13.
Front Plant Sci ; 8: 1798, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104581

RESUMO

Wild emmer (Triticum turgidum ssp. dicoccoides) is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dag region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. 'Langdon' x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum-Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dag wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.

14.
Philos Trans R Soc Lond B Biol Sci ; 372(1736)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29109223

RESUMO

While the evolutionary advantages of non-zero recombination rates have prompted diverse theoretical explanations, the evolution of essential recombination features remains underexplored. We focused on one such feature, the condition dependence of recombination, viewed as the variation in within-generation sensitivity of recombination to external (environment) and/or internal (genotype) conditions. Limited empirical evidence for its existence comes mainly from diploids, whereas theoretical models show that it only easily evolves in haploids. The evolution of condition-dependent recombination can be explained by its advantage for the selected system (indirect effect), or by benefits to modifier alleles, ensuring this strategy regardless of effects on the selected system (direct effect). We considered infinite panmictic populations of diploids exposed to a cyclical two-state environment. Each organism had three selected loci. Examining allele dynamics at a fourth, selectively neutral recombination modifier locus, we frequently observed that a modifier allele conferring condition-dependent recombination between the selected loci displaced the allele conferring the optimal constant recombination rate. Our simulations also confirm the results of theoretical studies showing that condition-dependent recombination cannot evolve in diploids on the basis of direct fitness-dependent effects alone. Therefore, the evolution of condition-dependent recombination in diploids can be driven by indirect effects alone, i.e. by modifier effects on the selected system.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.


Assuntos
Diploide , Recombinação Genética/genética , Seleção Genética , Alelos , Modelos Genéticos
15.
Nat Commun ; 8(1): 1570, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146998

RESUMO

Determining the mechanisms by which a species adapts to its environment is a key endeavor in the study of evolution. In particular, relatively little is known about how transcriptional processes are fine-tuned to adjust to different environmental conditions. Here we study Drosophila melanogaster from 'Evolution Canyon' in Israel, which consists of two opposing slopes with divergent microclimates. We identify several hundred differentially expressed genes and dozens of differentially edited sites between flies from each slope, correlate these changes with genetic differences, and use CRISPR mutagenesis to validate that an intronic SNP in prominin regulates its editing levels. We also demonstrate that while temperature affects editing levels at more sites than genetic differences, genetically regulated sites tend to be less affected by temperature. This work shows the extent to which gene expression and RNA editing differ between flies from different microclimates, and provides insights into the regulation responsible for these differences.


Assuntos
Antígeno AC133/genética , Adaptação Fisiológica/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Edição de RNA/genética , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Drosophila , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Genoma/genética , Glutationa Transferase/metabolismo , Microclima , Fosfoproteínas Fosfatases/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Temperatura
16.
Genetics ; 206(3): 1285-1295, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28512186

RESUMO

The study is focused on addressing the problem of building genetic maps in the presence of ∼103-104 of markers per chromosome. We consider a spectrum of situations with intrachromosomal heterogeneity of recombination rate, different level of genotyping errors, and missing data. In the ideal scenario of the absence of errors and missing data, the majority of markers should appear as groups of cosegregating markers ("twins") representing no challenge for map construction. The central aspect of the proposed approach is to take into account the structure of the marker space, where each twin group (TG) and singleton markers are represented as points of this space. The confounding effect of genotyping errors and missing data leads to reduction of TG size, but upon a low level of these effects surviving TGs can still be used as a source of reliable skeletal markers. Increase in the level of confounding effects results in a considerable decrease in the number or even disappearance of usable TGs and, correspondingly, of skeletal markers. Here, we show that the paucity of informative markers can be compensated by detecting kernels of markers in the marker space using a clustering procedure, and demonstrate the utility of this approach for high-density genetic map construction on simulated and experimentally obtained genotyping datasets.


Assuntos
Algoritmos , Ligação Genética , Mapeamento Físico do Cromossomo/métodos , Conjuntos de Dados como Assunto/normas , Marcadores Genéticos , Mapeamento Físico do Cromossomo/normas
17.
Front Plant Sci ; 7: 1437, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713759

RESUMO

Melon (Cucumis melo L.) is a phenotypically diverse eudicot diploid (2n = 2x = 24) has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing (GBS) and anchored them to chromosomes to understand genome-wide fixation indices (Fst) between various melon morphotypes and genomewide linkage disequilibrium (LD) decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19-0.53 and between inodorus and agrestis accessions was in a range of 0.21-0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization) algorithm was used for estimation of 1436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS) and biparental mapping. Gene annotation revealed some of the SNPs are located in ß-D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops.

18.
BMC Evol Biol ; 16: 177, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590526

RESUMO

BACKGROUND: The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage. Therefore, we aimed to identify shared features among species that are adapted to hypoxic stress in the sequence of the tumor-suppressor protein p53, a master regulator of the DNA-damage response (DDR). RESULTS: We found that the sequences of p53 transactivation subdomain 2 (TAD2) and tetramerization and regulatory domains (TD and RD) are more similar among hypoxia-tolerant species than expected from phylogeny. Specific positions in these domains composed patterns that are more frequent in hypoxia-tolerant species and have proven to be good predictors of species' classification into stress-related categories. Some of these positions, which are known to be involved in the interactions between p53 and critical DDR proteins, were identified as positively selected. By 3D modeling of p53 interactions with the coactivator p300 and the DNA repair protein RPA70, we demonstrated that, compared to humans, these substitutions potentially reduce the binding of these proteins to Spalax p53. CONCLUSIONS: We conclude that extreme hypoxic conditions may have led to convergent evolutionary adaptations of the DDR via TAD2 and TD/RD domains of p53.


Assuntos
Evolução Biológica , Reparo do DNA , Spalax/genética , Proteína Supressora de Tumor p53/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Hipóxia/veterinária , Modelos Moleculares , Neoplasias/genética , Neoplasias/veterinária , Oxigênio/metabolismo , Alinhamento de Sequência , Spalax/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
19.
BMC Genomics ; 17: 233, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979755

RESUMO

BACKGROUND: Experimental evolution studies, coupled with whole genome resequencing and advances in bioinformatics, have become a powerful tool for exploring how populations respond to selection at the genome-wide level, complementary to genome-wide association studies (GWASs) and linkage mapping experiments as strategies to connect genotype and phenotype. In this experiment, we analyzed genomes of Drosophila melanogaster from lines evolving under long-term directional selection for increased desiccation resistance in comparison with control (no-selection) lines. RESULTS: We demonstrate that adaptive responses to desiccation stress have exerted extensive footprints on the genomes, manifested through a high degree of fixation of alleles in surrounding neighborhoods of eroded heterozygosity. These patterns were highly convergent across replicates, consistent with signatures of 'soft' selective sweeps, where multiple alleles present as standing genetic variation become beneficial and sweep through the replicate populations at the same time. Albeit much less frequent, we also observed line-unique sweep regions with zero or near-zero heterozygosity, consistent with classic, or 'hard', sweeps, where novel rather than pre-existing adaptive mutations may have been driven to fixation. Genes responsible for cuticle and protein deubiquitination seemed to be central to these selective sweeps. High divergence within coding sequences between selected and control lines was also reflected by significant results of the McDonald-Kreitman and Ka/Ks tests, showing that as many as 347 genes may have been under positive selection. CONCLUSIONS: Desiccation stress, a common challenge to many organisms inhabiting dry environments, proves to be a very potent selecting factor having a big impact on genome diversity.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Drosophila melanogaster/genética , Evolução Molecular , Genoma de Inseto , Estresse Fisiológico , Alelos , Animais , Drosophila melanogaster/fisiologia , Feminino , Variação Genética , Genótipo , Masculino , Mutação , Seleção Genética , Análise de Sequência de DNA
20.
Front Plant Sci ; 7: 2063, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119729

RESUMO

Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...