Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1363803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481571

RESUMO

Introduction: Daunorubicin and doxorubicin, two anthracycline polyketides produced by S. peucetius, are potent anticancer agents that are widely used in chemotherapy, despite severe side effects. Recent advances have highlighted the potential of producing improved derivatives with reduced side effects by incorporating l-rhodosamine, the N,N-dimethyl analogue of the native amino sugar moiety. Method: In this study, we aimed to produce N,N-dimethylated anthracyclines by engineering the doxorubicin biosynthetic pathway in the industrial Streptomyces peucetius strain G001. To achieve this, we introduced genes from the aclarubicin biosynthetic pathway encoding the sugar N-methyltransferases AclP and AknX2. Furthermore, the native gene for glycosyltransferase DnrS was replaced with genes encoding the aclarubicin glycosyltransferases AknS and AknT. Additionally, the gene for methylesterase RdmC from the rhodomycin biosynthetic pathway was introduced. Results: A new host was engineered successfully, whereby genes from the aclarubicin pathway were introduced and expressed. LC-MS/MS analysis of the engineered strains showed that dimethylated sugars were efficiently produced, and that these were incorporated ino the anthracycline biosynthetic pathway to produce the novel dimethylated anthracycline N,N-dimethyldaunorubicin. Further downstream tailoring steps catalysed by the cytochrome P450 monooxygenase DoxA exhibited limited efficacy with N,N-dimethylated substrates. This resulted in only low production levels of N,N-dimethyldaunorubicin and no N,N-dimethyldoxorubicin, most likely due to the low affinity of DoxA for dimethylated substrates. Discussion: S. peucetius G001 was engineered such as to produce N,N-dimethylated sugars, which were incorporated into the biosynthetic pathway. This allowed the successful production of N,N-dimethyldaunorubicin, an anticancer drug with reduced cytotoxicity. DoxA is the key enzyme that determines the efficiency of the biosynthesis of N,N-dimethylated anthracyclines, and engineering of this enzyme will be a major step forwards towards the efficient production of more N,N-dimethylated anthracyclines, including N,N-dimethyldoxorubicin. This study provides valuable insights into the biosynthesis of clinically relevant daunorubicin derivatives, highlighting the importance of combinatorial biosynthesis.

2.
Metab Eng ; 73: 124-133, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809806

RESUMO

Actinomycetes are important producers of pharmaceuticals and industrial enzymes. However, wild type strains require laborious development prior to industrial usage. Here we present a generally applicable reporter-guided metabolic engineering tool based on random mutagenesis, selective pressure, and single-cell sorting. We developed fluorescence-activated cell sorting (FACS) methodology capable of reproducibly identifying high-performing individual cells from a mutant population directly from liquid cultures. Actinomycetes are an important source of catabolic enzymes, where product yields determine industrial viability. We demonstrate 5-fold yield improvement with an industrial cholesterol oxidase ChoD producer Streptomyces lavendulae to 20.4 U g-1 in three rounds. Strain development is traditionally followed by production medium optimization, which is a time-consuming multi-parameter problem that may require hard to source ingredients. Ultra-high throughput screening allowed us to circumvent medium optimization and we identified high ChoD yield production strains directly from mutant libraries grown under preset culture conditions. Genome-mining based drug discovery is a promising source of bioactive compounds, which is complicated by the observation that target metabolic pathways may be silent under laboratory conditions. We demonstrate our technology for drug discovery by activating a silent mutaxanthene metabolic pathway in Amycolatopsis. We apply the method for industrial strain development and increase mutaxanthene yields 9-fold to 99 mg l-1 in a second round of mutant selection. In summary, the ability to screen tens of millions of mutants in a single cell format offers broad applicability for metabolic engineering of actinomycetes for activation of silent metabolic pathways and to increase yields of proteins and natural products.


Assuntos
Actinobacteria , Engenharia Metabólica , Actinobacteria/genética , Actinomyces , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Mutagênese
3.
Sci Rep ; 9(1): 11850, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413341

RESUMO

Cholesterol oxidases are important enzymes with a wide range of applications from basic research to industry. In this study, we have discovered and described the first cell-associated cholesterol oxidase, ChoD, from Streptomyces lavendulae YAKB-15. This strain is a naturally high producer of ChoD, but only produces ChoD in a complex medium containing whole yeast cells. For characterization of ChoD, we acquired a draft genome sequence of S. lavendulae YAKB-15 and identified a gene product containing a flavin adenine dinucleotide binding motif, which could be responsible for the ChoD activity. The enzymatic activity was confirmed in vitro with histidine tagged ChoD produced in Escherichia coli TOP10, which lead to the determination of basic kinetic parameters with Km 15.9 µM and kcat 10.4/s. The optimum temperature and pH was 65 °C and 5, respectively. In order to increase the efficiency of production, we then expressed the cholesterol oxidase, choD, gene heterologously in Streptomyces lividans TK24 and Streptomyces albus J1074 using two different expression systems. In S. albus J1074, the ChoD activity was comparable to the wild type S. lavendulae YAKB-15, but importantly allowed production of ChoD without the presence of yeast cells.


Assuntos
Colesterol Oxidase/biossíntese , Streptomyces/citologia , Streptomyces/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Óperon/genética , Proteínas Recombinantes/metabolismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...