Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30960043

RESUMO

Polymeric membranes, based on a polysulfone-type aromatic polyether matrix, were successfully developed via the non-solvent induced phase separation (NIPS) method. The polyethersulfone type polymer poly[2-(4-(diphenylsulfonyl)-phenoxy)-6-(4-phenoxy) pyridine] (PDSPP) was used as the membrane matrix, and mixed with its sulfonated derivative (SPDSPP) and a polymeric porogen. The SPDPPP was added to impart hydrophilicity, while at the same time maintaining the interactions with the non-sulfonated aromatic polyether forming the membrane matrix. Different techniques were used for the membranes' properties characterization. The results revealed that the use of the non-sulfonated and sulfonated polymers of the same polymeric backbone, at certain compositions, can lead to membranes with controllable porosity and hydrophilicity.

2.
ACS Appl Mater Interfaces ; 8(51): 35593-35605, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27976854

RESUMO

In the present work, reactive blending of copolymers with complementary functional groups was applied to control their antimicrobial activity and antifouling action in real conditions. For this purpose, two series of copolymers, poly(4-vinylbenzyl chloride-co-acrylic acid), P(VBC-co-AAx), and poly(sodium 4-styrenesulfonate-co-glycidyl methacrylate), P(SSNa-co-GMAx), were synthesized via free radical copolymerization and further modified by the incorporation of biocidal units either covalently (4-vinyl benzyl dimethylhexadecylammonium chloride, VBCHAM) or electrostatically bound (cetyltrimethylammonium 4-styrenesulfonate, SSAmC16). The cross-linking reaction of the carboxylic group of acrylic acid (AA) with the epoxide group of glycidyl methacrylate (GMA) of these two series of reactive antimicrobial copolymers was explored in blends obtained through solution casting after curing at various temperatures. The combined results from the ATR-FTIR characterization of the membranes, solubility tests, turbidimetry, and TEM suggest that the reaction occurs already at 80 °C, leading mostly to graft samples, while at higher curing temperatures (120 or 150 °C) insoluble cross-linked samples are usually obtained. Controlled release experiments of selected membranes were performed in pure water and aqueous 1 M NaCl solutions for a period of two months. The released material was followed through gravimetry and TOC/TN measurements, while the evolution of the integrity and the morphology of the membranes were followed visually and through SEM, respectively. Antimicrobial tests also revealed that the cross-linked membranes presented strong antimicrobial activity against S. aureus and P. aeruginosa. Finally, a specific blend combination was applied on aquaculture nets and cured at 80 °C. The modified nets, emerged in the sea for 15 and 35 days, exhibited high antifouling action as compared to blank nets.


Assuntos
Compostos de Amônio/química , Anti-Infecciosos , Polimerização , Polímeros , Staphylococcus aureus
3.
Molecules ; 20(12): 21313-27, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26633329

RESUMO

In the present work a detailed study of new bacteriostatic copolymers with quaternized ammonium groups introduced in the polymer chain through covalent attachment or electrostatic interaction, was performed. Different copolymers have been considered since beside the active species, the hydrophobic/hydrophilic nature of the co-monomer was also evaluated in the case of covalently attached bacteriostatic groups, aiming at achieving permanent antibacterial activity. Homopolymers with quaternized ammonium/phosphonium groups were also tested for comparison reasons. The antimicrobial activity of the synthesized polymers after 3 and 24 h of exposure at 4 and 22 °C was investigated on cultures of Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, E. faecalis) bacteria. It was found that the combination of the hydrophilic monomer acrylic acid (AA), at low contents, with the covalently attached bacteriostatic group vinyl benzyl dimethylhexadecylammonium chloride (VBCHAM) in the copolymer P(AA-co-VBCHAM88), resulted in a high bacteriostatic activity against P. aeruginosa and E. faecalis (6 log reduction in certain cases). Moreover, the combination of covalently attached VBCHAM units with electrostatically bound cetyltrimethylammonium 4-styrene sulfonate (SSAmC16) units in the P(SSAmC16-co-VBCHAMx) copolymers led to efficient antimicrobial materials, especially against Gram-positive bacteria, where a log reduction between 4.9 and 6.2 was verified. These materials remain remarkably efficient even when they are incorporated in polysulfone membranes.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Polímeros/farmacologia , Compostos de Amônio Quaternário/química , Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Polímeros/química , Eletricidade Estática
4.
PLoS One ; 9(9): e107029, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229474

RESUMO

Novel Carbon Nanotube-Polymer Hybrids were synthesized as potential materials for the development of membranes for water treatment applications in the field of Membrane Bioreactors (MBRs). Due to the toxicological concerns regarding the use of nanomaterials in water treatment as well as the rising demand for safe drinking water to protect public health, we studied the functionalization of MWCNTs and Thin-MWCNTs as to control their properties and increase their ability of embedment into porous anisotropic polymeric membranes. Following the growth of the hydrophilic monomer on the surface of the properly functionalized CNTs, that act as initiator for the controlled radical polymerization (ATRP) of sodium styrene sulfonate (SSNa), the antimicrobial quaternized phosphonium and ammonium salts were attached on CNTs-g-PSSNa through non-covalent bonding. In another approach the covalent attachment of quaternized ammonium polymeric moieties of acrylic acid-vinyl benzyl chloride copolymers with N,N-dimethylhexadecylamine (P(AA12-co-VBCHAM)) on functionalized CNTs has also been attempted. Finally, the toxicological assessment in terms of cell viability and cell morphological changes revealed that surface characteristics play a major role in the biological response of functionalized CNTs.


Assuntos
Nanoestruturas/química , Nanotubos de Carbono/química , Polímeros/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...