Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Xenotransplantation ; 30(4): e12804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37148126

RESUMO

BACKGROUND: Pig-derived tissues could overcome the shortage of human donor organs in transplantation. However, the glycans with terminal α-Gal and Neu5Gc, which are synthesized by enzymes, encoded by the genes GGTA1 and CMAH, are known to play a major role in immunogenicity of porcine tissue, ultimately leading to xenograft rejection. METHODS: The N-glycome and glycosphingolipidome of native and decellularized porcine pericardia from wildtype (WT), GGTA1-KO and GGTA1/CMAH-KO pigs were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection. RESULTS: We identified biantennary and core-fucosylated N-glycans terminating with immunogenic α-Gal- and α-Gal-/Neu5Gc-epitopes on pericardium of WT pigs that were absent in GGTA1 and GGTA1/CMAH-KO pigs, respectively. Levels of N-glycans terminating with galactose bound in ß(1-4)-linkage to N-acetylglucosamine and their derivatives elongated by Neu5Ac were increased in both KO groups. N-glycans capped with Neu5Gc were increased in GGTA1-KO pigs compared to WT, but were not detected in GGTA1/CMAH-KO pigs. Similarly, the ganglioside Neu5Gc-GM3 was found in WT and GGTA1-KO but not in GGTA1/CMAH-KO pigs. The applied detergent based decellularization efficiently removed GSL glycans. CONCLUSION: Genetic deletion of GGTA1 or GGTA1/CMAH removes specific epitopes providing a more human-like glycosylation pattern, but at the same time changes distribution and levels of other porcine glycans that are potentially immunogenic.


Assuntos
Galactosiltransferases , Polissacarídeos , Animais , Suínos , Humanos , Animais Geneticamente Modificados , Transplante Heterólogo/métodos , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Epitopos
3.
Front Bioeng Biotechnol ; 11: 957458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741762

RESUMO

Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.

4.
J Mech Behav Biomed Mater ; 133: 105359, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35841749

RESUMO

Nowadays, repair and replacement of hyaline articular cartilage still challenges orthopedic surgery. Using a graft of decellularized articular cartilage as a structural scaffold is considered as a promising therapy. So far, successful cell removal has only been possible for small samples with destruction of the macrostructure or loss of biomechanics. Our aim was to develop a mild, enzyme-free chemical decellularization procedure while preserving the biomechanical properties of cartilage. Porcine osteochondral cylinders (diameter: 12 mm; height: 10 mm) were divided into four groups: Native plugs (NA), decellularized plugs treated with PBS, Triton-X-100 and SDS (DC), and plugs additionally treated with freeze-thaw-cycles of -20 °C, -80 °C or shock freezing in nitrogen (N2) before decellularization. In a non-decalcified HE stain the decellularization efficiency (cell removal, cell size, depth of decellularization) was calculated. For biomechanics the elastic and compression modulus, transition and failure strain as well as transition and failure stress were evaluated. The -20 °C, -80 °C, and N2 groups showed a complete decellularization of the superficial and middle zone. In the deep zone cells could not be removed in any experimental group. The biomechanical analysis showed only a reduced elastic modulus in all decellularized samples. No significant differences were found for the other biomechanical parameters.


Assuntos
Cartilagem Articular , Alicerces Teciduais , Aloenxertos , Animais , Módulo de Elasticidade , Matriz Extracelular/química , Congelamento , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
J Biomech Eng ; 143(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462588

RESUMO

Extracorporeal membrane oxygenation (ECMO) has been used clinically for more than 40 years as a bridge to transplantation, with hollow-fiber membrane (HFM) oxygenators gaining in popularity due to their high gas transfer and low flow resistance. In spite of the technological advances in ECMO devices, the inevitable contact of the perfused blood with the polymer hollow-fiber gas-exchange membrane, and the subsequent thrombus formation, limits their clinical usage to only 2-4 weeks. In addition, the inhomogeneous flow in the device can further enhance thrombus formation and limit gas-transport efficiency. Endothelialization of the blood contacting surfaces of ECMO devices offers a potential solution to their inherent thrombogenicity. However, abnormal shear stresses and inhomogeneous blood flow might affect the function and activation status of the seeded endothelial cells (ECs). In this study, the blood flow through two HFM oxygenators, including the commercially available iLA® MiniLung Petite Novalung (Xenios AG, Germany) and an experimental one for the rat animal model, was modeled using computational fluid dynamics (CFD), with a view to assessing the magnitude and distribution of the wall shear stress (WSS) on the hollow fibers and flow fields in the oxygenators. This work demonstrated significant inhomogeneity in the flow dynamics of both oxygenators, with regions of high hollow-fiber WSS and regions of stagnant flow, implying a variable flow-induced stimulation on seeded ECs and possible EC activation and damage in a biohybrid oxygenator setting.


Assuntos
Oxigenadores de Membrana , Hidrodinâmica
6.
Artif Organs ; 44(12): e552-e565, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32666514

RESUMO

Endothelialization of the blood contacting surfaces of blood-contacting medical devices, such as cardiovascular prostheses or biohybrid oxygenators, represents a plausible strategy for increasing their hemocompatibility. Nevertheless, isolation and expansion of autologous endothelial cells (ECs) usually requires multiple processing steps and time to obtain sufficient cell numbers. This excludes endothelialization from application in acute situations. Off-the-shelf availability of cell-seeded biohybrid devices could be potentially facilitated by hypothermic storage. In this study, the survival of cord-blood-derived endothelial colony forming cells (ECFCs) that were seeded onto polymethylpentene (PMP) gas-exchange membranes and stored for up to 2 weeks in different commercially available and commonly used preservation media was measured. While storage at 4°C in normal growth medium (EGM-2) for 3 days resulted in massive disruption of the ECFC monolayer and a significant decline in viability, ECFC monolayers preserved in Chillprotec could recover after up to 14 days with negligible effects on their integrity and viability. ECFC monolayers preserved in Celsior, HTS-FRS, or Rokepie medium showed a significant decrease in viability after 7 days or longer periods. These results demonstrated the feasibility of hypothermic preservation of ECFC monolayers on gas-exchange membranes for up to 2 weeks, with potential application on the preservation of pre-endothelialized oxygenators and further biohybrid cardiovascular devices.


Assuntos
Técnicas de Cultura de Células/métodos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Membranas Artificiais , Refrigeração , Trombose/prevenção & controle , Células Cultivadas , Temperatura Baixa , Oxigenação por Membrana Extracorpórea/instrumentação , Estudos de Viabilidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco , Trombose/etiologia
7.
Xenotransplantation ; 27(5): e12617, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557876

RESUMO

The use of decellularized xenogeneic heart valves might offer a solution to overcome the issue of human valve shortage. The aim of this study was to revise decellularization protocols in combination with enzymatic deglycosylation, in order to reduce the immunogenicity of porcine pulmonary heart valves, in means of cells, carbohydrates, and, primarily, Galα1-3Gal (α-Gal) epitope removal. In particular, the valves were decellularized with sodium dodecylsulfate/sodium deoxycholate (SDS/SD), Triton X-100 + SDS (Tx + SDS), or Trypsin + Triton X-100 (Tryp + Tx) followed by enzymatic digestion with PNGaseF, Endoglycosidase H, or O-glycosidase combined with Neuraminidase. Results showed that decellularization alone reduced carbohydrate structures only to a limited extent, and it did not result in an α-Gal free scaffold. Nevertheless, decellularization with Tryp + Tx represented the most effective decellularization protocol in means of carbohydrates reduction. Overall, carbohydrates and α-Gal removal could strongly be improved by applying PNGaseF, in particular in combination with Tryp + Tx treatment, contrary to Endoglycosidase H and O-glycosidase treatments. Furthermore, decellularization with PNGaseF did not affect biomechanical stability, in comparison with decellularization alone, as shown by burst pressure and uniaxial tensile tests. In conclusion, valves decellularized with Tryp + Tx and PNGaseF resulted in prostheses with potentially reduced immunogenicity and maintained mechanical stability.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Transplante Heterólogo , Animais , Carboidratos , Glicosilação , Valvas Cardíacas , Humanos , Suínos , Engenharia Tecidual
8.
Biomolecules ; 10(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121155

RESUMO

Xenogeneic pericardium-based substitutes are employed for several surgical indications after chemical shielding, limiting their biocompatibility and therapeutic durability. Adverse responses to these replacements might be prevented by tissue decellularization, ideally removing cells and preserving the original extracellular matrix (ECM). The aim of this study was to compare the mostly applied pericardia in clinics, i.e. bovine and porcine tissues, after their decellularization, and obtain new insights for their possible surgical use. Bovine and porcine pericardia were submitted to TRICOL decellularization, based on osmotic shock, detergents and nuclease treatment. TRICOL procedure resulted in being effective in cell removal and preservation of ECM architecture of both species' scaffolds. Collagen and elastin were retained but glycosaminoglycans were reduced, significantly for bovine scaffolds. Tissue hydration was varied by decellularization, with a rise for bovine pericardia and a decrease for porcine ones. TRICOL significantly increased porcine pericardial thickness, while a non-significant reduction was observed for the bovine counterpart. The protein secondary structure and thermal denaturation profile of both species' scaffolds were unaltered. Both pericardial tissues showed augmented biomechanical compliance after decellularization. The ECM bioactivity of bovine and porcine pericardia was unaffected by decellularization, sustaining viability and proliferation of human mesenchymal stem cells and endothelial cells. In conclusion, decellularized bovine and porcine pericardia demonstrate possessing the characteristics that are suitable for the creation of novel scaffolds for reconstruction or replacement: differences in water content, thickness and glycosaminoglycans might influence some of their biomechanical properties and, hence, their indication for surgical use.


Assuntos
Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Teste de Materiais , Pericárdio/química , Animais , Bovinos , Colágeno/química , Elastina/química , Humanos , Pericárdio/cirurgia , Especificidade da Espécie , Suínos
9.
Cryobiology ; 92: 215-230, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31972153

RESUMO

Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.


Assuntos
Colágeno/farmacologia , Criopreservação/métodos , Crioprotetores/farmacologia , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Animais , Bancos de Espécimes Biológicos , Callithrix , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Congelamento , Sacarose/farmacologia , Engenharia Tecidual
10.
IEEE Trans Biomed Eng ; 67(9): 2453-2461, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31902749

RESUMO

Calcification is a recurrent problem in patients suffering from heart valve disease and it is the main cause of failure in biological heart valve prostheses. The development of reliable calcification tests that consider both the material properties of the prostheses and the fluid composition is of paramount importance for the effective testing and subsequent selection of new cardiovascular implants. In this article, a fast, reliable, and highly reproducible method for the assessment of the calcification potential of biomaterials was developed. The developed method simulated closely the chemical environment in vivo, where the supersaturation levels of calcium and phosphate remain constant. Seeded hydroxyapatite (HAP) crystal growth experiments were used as the reference system and compared to the mineralization kinetics and extent of frozen untreated bovine and porcine pericardium, and glutaraldehyde-fixed bovine pericardium. Untreated pericardial patches did not calcify in the supersaturated calcium phosphate solutions whereas glutaraldehyde-fixed bovine pericardial patches mineralized at the same conditions. The present work suggested that the loose collagenous serosa side of the pericardium mineralized at lower rates compared to its dense collagenous fibrous side. Concordant with these findings, the mineralization of bioprostheses may also be attributed, to the structural deterioration of collagen-rich tissues, induced by chemical treatment used to control in vivo structural stability and immunomodulation of the implants.


Assuntos
Bioprótese , Calcinose , Próteses Valvulares Cardíacas , Animais , Bioprótese/efeitos adversos , Calcinose/etiologia , Bovinos , Próteses Valvulares Cardíacas/efeitos adversos , Valvas Cardíacas , Humanos , Pericárdio , Suínos
11.
Proc Inst Mech Eng H ; 233(5): 544-553, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30922162

RESUMO

This study was aimed at assessing the robustness of a fixed-grid fluid-structure interaction method (Multi-Material Arbitrary Lagrangian-Eulerian) to modelling the two-dimensional native aortic valve dynamics and comparing it to the Arbitrary Lagrangian-Eulerian method. For the fixed-grid method, the explicit finite element solver LS-DYNA was utilized, where two independent meshes for the fluid and structure were generated and the penalty method was used to handle the coupling between the fluid and structure domains. For the Arbitrary Lagrangian-Eulerian method, the implicit finite element solver ADINA was used where two separate conforming meshes were used for the valve structure and the fluid domains. The comparison demonstrated that both fluid-structure interaction methods predicted accurately the valve dynamics, fluid flow, and stress distribution, implying that fixed-grid methods can be used in situations where the Arbitrary Lagrangian-Eulerian method fails.


Assuntos
Valva Aórtica/fisiologia , Hidrodinâmica , Fenômenos Mecânicos , Modelos Biológicos , Fenômenos Biomecânicos , Análise de Elementos Finitos
12.
Acta Biomater ; 84: 208-221, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30342283

RESUMO

Decellularized biological scaffolds hold great promise in cardiovascular surgery. In order to ensure off-the-shelf availability, routine use of decellularized scaffolds requires tissue banking. In this study, the suitability of cryopreservation, vitrification and freeze-drying for the preservation of decellularized bovine pericardial (DBP) scaffolds was evaluated. Cryopreservation was conducted using 10% DMSO and slow-rate freezing. Vitrification was performed using vitrification solution (VS83) and rapid cooling. Freeze-drying was done using a programmable freeze-dryer and sucrose as lyoprotectant. The impact of the preservation methods on the DBP extracellular matrix structure, integrity and composition was assessed using histology, biomechanical testing, spectroscopic and thermal analysis, and biochemistry. In addition, the cytocompatibility of the preserved scaffolds was also assessed. All preservation methods were found to be suitable to preserve the extracellular matrix structure and its components, with no apparent signs of collagen deterioration or denaturation, or loss of elastin and glycosaminoglycans. Biomechanical testing, however, showed that the cryopreserved DBP displayed a loss of extensibility compared to vitrified or freeze-dried scaffolds, which both displayed similar biomechanical behavior compared to non-preserved control scaffolds. In conclusion, cryopreservation altered the biomechanical behavior of the DBP scaffolds, which might lead to graft dysfunction in vivo. In contrast to cryopreservation and vitrification, freeze-drying is performed with non-toxic protective agents and does not require storage at ultra-low temperatures, thus allowing for a cost-effective and easy storage and transport. Due to these advantages, freeze-drying is a preferable method for the preservation of decellularized pericardium. STATEMENT OF SIGNIFICANCE: Clinical use of DBP scaffolds for surgical reconstructions or substitutions requires development of a preservation technology that does not alter scaffold properties during long-term storage. Conclusive investigation on adverse impacts of the preservation methods on DBP matrix integrity is still missing. This work is aiming to close this gap by studying three potential preservation technologies, cryopreservation, vitrification and freeze-drying, in order to achieve the off-the-shelf availability of DBP patches for clinical application. Furthermore, it provides novel insights for dry-preservation of decellularized xenogeneic scaffolds that can be used in the routine clinical cardiovascular practice, allowing the surgeon the opportunity to choose an ideal implant matching with the needs of each patient.


Assuntos
Criopreservação , Matriz Extracelular/química , Pericárdio/química , Alicerces Teciduais/química , Animais , Bovinos , Liofilização , Humanos , Vitrificação
13.
Tissue Eng Part A ; 25(5-6): 399-415, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582419

RESUMO

IMPACT STATEMENT: The generation of a small-caliber arterial graft, utilizing a large vessel of a small animal, such as the aorta of the rat or rabbit, for clinical use in the peripheral arterial tree, can widen the options for arterial prostheses. This in vivo study demonstrated the ability of the decellularization protocol that was used to produce a noncytotoxic acellular small-caliber arterial graft, with sufficient biomechanical and biological integrity to withstand the demanding flow and pressure environment of the rat aorta. This work also demonstrated the superiority of the decellularized homograft over its intact counterpart, in terms of lower immunogenicity.


Assuntos
Aorta/citologia , Aorta/imunologia , Materiais Biocompatíveis/farmacologia , Animais , Antígenos CD/metabolismo , Aorta/efeitos dos fármacos , Fenômenos Biomecânicos , Imuno-Histoquímica , Masculino , Modelos Animais , Ratos , Transplante Homólogo
14.
J Mater Sci Mater Med ; 29(12): 188, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30535820

RESUMO

The original version of this article unfortunately contained a few errors. The captions of Figs. 4, 5, 6, 7, and 8 were mixed up and they were misreferred in the text. The correct captions and their references in text are given below.

15.
J Mater Sci Mater Med ; 29(11): 175, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413947

RESUMO

Heart valve diseases remain common in industrialized countries. Bioprosthetic heart valves, introduced as free of anticoagulation therapy alternatives to mechanical substitutes. Still they suffer from long term failure due to calcification. Different treatment methods introduced to inhibit calcification, have so far been limited in success. Glycosaminoglycans (GAGs) possess properties including high negative charge, anticoagulation and anti-inflammatory activity that make them a potential solution for calcification problem. In this study, heparin hydrogel was prepared and characterized both chemically and mechanically. After that, heparin hydrogel embedded bovine pericardial tissues, fixed with glutaraldehyde, were produced and tested for their mechanical behavior and anticalcifcation potential in vitro using the constant composition model. In the calcification experiments, tissues were divided into three groups: a) Controls without treatment, b) Hydrogel treated tissues and c) Tissues with raw heparin dissolved in the calcification solution. The results showed that embedding of tissue with hydrogel had no stiffening effect on its mechanical behavior. Calcification assessment showed a significant efficacy on inhibition of calcium phosphate deposition of hydrogel treated (second group) in comparison to untreated tissues (control, first group). Calcification inhibition potential was very similar in both the second and raw heparin (third group). Histological data confirmed the obtained results, suggesting that heparin treatment is a promising anticalcification agent.


Assuntos
Glutaral/química , Próteses Valvulares Cardíacas , Heparina/química , Hidrogéis/química , Pericárdio/química , Animais , Fenômenos Biomecânicos , Bioprótese , Calcificação Fisiológica/efeitos dos fármacos , Calcinose/prevenção & controle , Cálcio , Bovinos , Fixação de Tecidos
16.
J Tissue Eng Regen Med ; 12(12): 2319-2330, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362254

RESUMO

Several key prerequisites need to be fulfilled for the development of a biohybrid lung, which can offer an actual alternative to lung transplantation. A major aspect is an optimized haemocompatibility of the device's artificial surfaces via endothelial cell seeding. In this study, four different types of polymeric gas exchange hollow fibre membranes (HFMs) were analysed utilizing four different seeding protocols in order to identify the ideal combination for sufficient long-term endothelialization. Human cord blood-derived endothelial cells (HCBECs) were used for the endothelialization of polypropylene HFMs with two different pore sizes and poly-4-methyl-1-pentene HFMs, both with and without heparin/albumin coating. The qualitative and quantitative impact of four different rotational seeding protocols regarding long-term HFM endothelialization and the impact of inflammatory stimulation on the seeded HCBECs were examined by fluorescence microscopy, cell counting, and analysis of relative expression levels of activation, shear stress, and thrombogenic state markers. Optimized endothelial cell seeding and long-term cultivation were only achieved using heparin/albumin-coated poly-4-methyl-1-pentene HFMs, applying 24 hr of rotational speed at 1 rpm followed by 120 hr of static culture. Neither cell-to-HFM contact nor the rotational cultivation procedure showed an impact on the physiological anti-thrombogenic and anti-inflammatory HCBEC activation status. Additionally, the cells maintained their physiological responsiveness towards inflammatory stimulation. Rotational seeding strategies and a seamless heparin/albumin coating of the HFMs are crucial requirements for a sufficient and long-lasting endothelialization and thus a key element in the future development and in vivo application of the biohybrid lung.


Assuntos
Órgãos Artificiais , Materiais Revestidos Biocompatíveis/farmacologia , Endotélio Vascular/crescimento & desenvolvimento , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pulmão , Membranas Artificiais , Técnicas de Cultura de Células , Materiais Revestidos Biocompatíveis/química , Endotélio Vascular/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
17.
Sci Rep ; 8(1): 12982, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154529

RESUMO

Freeze-dried storage of decellularized heart valves provides easy storage and transport for clinical use. Freeze-drying without protectants, however, results in a disrupted histoarchitecture after rehydration. In this study, heart valves were incubated in solutions of various sucrose concentrations and subsequently freeze-dried. Porosity of rehydrated valves was determined from histological images. In the absence of sucrose, freeze-dried valves were shown to have pores after rehydration in the cusp, artery and muscle sections. Use of sucrose reduced pore formation in a dose-dependent manner, and pretreatment of the valves in a 40% (w/v) sucrose solution prior to freeze-drying was found to be sufficient to completely diminish pore formation. The presence of pores in freeze-dried valves was found to coincide with altered biomechanical characteristics, whereas biomechanical parameters of valves freeze-dried with enough sucrose were not significantly different from those of valves not exposed to freeze-drying. Multiphoton imaging, Fourier transform infrared spectroscopy, and differential scanning calorimetry studies revealed that matrix proteins (i.e. collagen and elastin) were not affected by freeze-drying.


Assuntos
Proteínas da Matriz Extracelular/química , Valvas Cardíacas/química , Sacarose/química , Animais , Liofilização , Porosidade , Suínos
18.
Acta Biomater ; 67: 282-294, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29183849

RESUMO

Decellularized xenogeneic scaffolds have shown promise to be employed as compatible and functional cardiovascular biomaterials. However, one of the main barriers to their clinical exploitation is the lack of appropriate sterilization procedures. This study investigated the efficiency of a two-step sterilization method, antibiotics/antimycotic (AA) cocktail and peracetic acid (PAA), on porcine and bovine decellularized pericardium. In order to assess the efficiency of the method, a sterilization assessment protocol was specifically designed, comprising: i) controlled contamination with a known amount of bacteria; ii) sterility test; iii) identification of contaminants through MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry and iv) quantification by the Most Probable Number (MPN) method. This sterilization assessment protocol proved to be a successful tool to monitor and optimize the proposed sterilization method. The treatment with AA + PAA method provided sterile scaffolds while preserving the structural integrity and biocompatibility of the decellularized porcine and bovine tissues. However, surface properties and cellular adhesion resulted slightly impaired on porcine pericardium. This work developed a sterilization method suitable for decellularized pericardial scaffolds that could be adopted for in vivo tissue engineering. Together with the proposed sterilization assessment protocol, this decontamination method will foster the clinical translation of decellularized xenogeneic substitutes. STATEMENT OF SIGNIFICANCE: Clinical application of functional and compatible xenogeneic decellularized scaffolds has been delayed due to the lack of appropriate sterilization methodologies. In this study, it was investigated an effective sterilization method optimized for porcine and bovine decellularized pericardia, based on the use of antibiotics/antimycotics followed by peracetic acid treatment. This treatment effectively sterilizes both species scaffolds, proves to maintain tissue overall structure and components, preserves biocompatibility and biomechanical properties. Furthermore, it was also developed a sterilization assessment protocol used to monitor and validate the previous method, consisting in three main parts: i) controlled contamination; ii) sterility test, and iii) identification and quantification of contaminants. Both methodologies were optimized for the tissues in study but can be applied to other scaffolds and accelerate their clinical translation.


Assuntos
Coração/fisiologia , Xenoenxertos/fisiologia , Esterilização/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Aderência Bacteriana , Fenômenos Biomecânicos , Bovinos , Morte Celular , Humanos , Células-Tronco Mesenquimais/citologia , Pericárdio/fisiologia , Sus scrofa , Água/química
19.
J Cardiovasc Transl Res ; 10(4): 374-390, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28462436

RESUMO

Decellularized scaffolds represent a promising alternative for mitral valve (MV) replacement. This work developed and characterized a protocol for the decellularization of whole MVs. Porcine MVs were decellularized with 0.5% (w/v) SDS and 0.5% (w/v) SD and sterilized with 0.1% (v/v) PAA. Decellularized samples were seeded with human foreskin fibroblasts and human adipose-derived stem cells to investigate cellular repopulation and infiltration, and with human colony-forming endothelial cells to investigate collagen IV formation. Histology revealed an acellular scaffold with a generally conserved histoarchitecture, but collagen IV loss. Following decellularization, no significant changes were observed in the hydroxyproline content, but there was a significant reduction in the glycosaminoglycan content. SEM/TEM analysis confirmed cellular removal and loss of some extracellular matrix components. Collagen and elastin were generally preserved. The endothelial cells produced newly formed collagen IV on the non-cytotoxic scaffold. The protocol produced acellular scaffolds with generally preserved histoarchitecture, biochemistry, and biomechanics.


Assuntos
Bioprótese , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas , Valva Mitral , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo IV/metabolismo , Replicação do DNA , Elastina/metabolismo , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidroxiprolina/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Valva Mitral/imunologia , Valva Mitral/metabolismo , Valva Mitral/transplante , Valva Mitral/ultraestrutura , Células-Tronco/metabolismo , Sus scrofa , Fatores de Tempo
20.
Acta Biomater ; 50: 510-521, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27956361

RESUMO

Fouling on the gas-exchange hollow-fiber membrane (HFM) of extracorporeal membrane oxygenation (ECMO) devices by blood components and pathogens represents the major hurdle to their long-term application in patients with lung deficiency or unstable hemodynamics. Although patients are treated with anticoagulants, deposition of blood proteins onto the membrane surface may still occur after few days, leading to insufficient gas transfer and, consequently, to device failure. The aim of this study was to establish an endothelial cell (EC) monolayer onto the gas-exchange membrane of an ECMO device with a view to developing a hemocompatible bioartificial lung. Poly(4-methyl-1-pentene) (PMP) gas-exchange membranes were coated with titanium dioxide (TiO2), using the pulsed vacuum cathodic arc plasma deposition (PVCAPD) technique, in order to generate a stable interlayer, enabling cell adhesion onto the strongly hydrophobic PMP membrane. The TiO2 coating reduced the oxygen transfer rate (OTR) of the membrane by 22%, and it successfully mediated EC attachment. The adhered ECs formed a confluent monolayer, which retained a non-thrombogenic state and showed cell-to-cell, as well as cell-to-substrate contacts. The established monolayer was able to withstand physiological shear stress and possessed a "self-healing" capacity at areas of induced monolayer disruption. The study demonstrated that the TiO2 coating mediated EC attachment and the establishment of a functional EC monolayer. STATEMENT OF SIGNIFICANCE: Surface endothelialization is considered an effective approach to achieve complete hamocompatibility of blood-contacting devices. Several strategies to enable endothelial cell adhesion onto stents and vascular prostheses have already been described in the literature. However, only few studies investigated the feasibility of establishing an endothelial monolayer onto the gas exchange membrane of ECMO devices, using peptides or proteins that were weakly adsorbed via dip coating techniques. This study demonstrated the effectiveness of an alternative and stable titanium dioxide coating for gas-exchange membranes, which enabled the establishment of a confluent, functional and non-activated endothelial monolayer, while maintaining oxygen permeability.


Assuntos
Órgãos Bioartificiais , Materiais Revestidos Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Pulmão/efeitos dos fármacos , Membranas Artificiais , Oxigênio/química , Titânio/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HL-60 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Adesividade Plaquetária/efeitos dos fármacos , Polienos/química , Reação em Cadeia da Polimerase em Tempo Real , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...