Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(49): 55331-55341, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33190485

RESUMO

Resistive switching (RS) device behavior is highly dependent on both insulator and electrode material properties. In particular, the bottom electrode (BE) surface morphology can strongly affect RS characteristics. In this work, Ru films with different thicknesses grown on a TiN layer by radical-enhanced atomic layer deposition (REALD) are used as an inert BE in TaOx-based RS structures. The REALD Ru surface roughness is found to increase by more than 1 order of magnitude with the increase in the reaction cycle number. Simultaneously, a wide range of RS parameters, such as switching voltage, resistance both in low and high resistance states, endurance, and so forth, monotonically change. A simplified model is proposed to explain the linkage between RS properties and roughness of the Ru surface. The field distribution was simulated based on the observed surface morphologies, and the resulting conducting filament formation was anticipated based on the local field enhancement. Conductive atomic force microscopy confirmed the theoretical expectations.

2.
ACS Appl Mater Interfaces ; 10(3): 2701-2708, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29282976

RESUMO

Hf0.5Zr0.5O2 thin films are one of the most appealing HfO2-based ferroelectric thin films, which have been researched extensively for their applications in ferroelectric memory devices. In this work, a 1 mol % La-doped Hf0.5Zr0.5O2 thin film was grown by plasma-assisted atomic layer deposition and annealed at temperatures of 450 and 500 °C to crystallize the film into the desired orthorhombic phase. Despite the use of a lower temperature than that used in previous reports, the film showed highly promising ferroelectric properties-a remnant polarization of ∼30 µC/cm2 and switching cycle endurance up to 4 × 1010. The performance was much better than that of undoped Hf0.5Zr0.5O2 thin films, demonstrating the positive influence of La doping. Such improvements were mainly attributed to the decreased coercive field (by ∼30% compared to the undoped film), which allowed for the use of a lower applied field to drive the cycling tests while maintaining a high polarization value. La doping also decreased the leakage current by ∼3 orders of magnitude compared to the undoped film, which also contributed to the strongly improved endurance. Nonetheless, the La-doped film required a larger number of wake-up cycles (∼106 cycles) to reach a saturated remnant polarization value. This behavior might be explained by the increased generation of oxygen vacancies and slower migration of these vacancies from the interface to the bulk region. However, the maximum number of wake-up cycles was less than 0.01% of the total possible cycles, and therefore, initializing the film to the maximum performance state would not be a serious burden.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...