Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16397, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013969

RESUMO

Bird sex determination is fundamental in various ecological and biological studies, although many avian species cannot be sexed visually due to their monomorphic and/or monochromatic appearance. Thus, reliable laboratory methods for sexing are a prerequisite. Most avian nestlings lack sex-related signs, including the Eurasian pygmy owl (Glaucidium passerinum). We performed laboratory sex determination analysis of this species using blood samples of 242 juveniles and nine adults. It relied on the qPCR of the specific intron from the chromo-helicase DNA-binding protein 1 gene. We tested three primer sets, the P2/P8, 2550F/2718R, and CHD1F/CHD1R, commonly used for bird laboratory sexing. The outcomes were displayed on an agarose gel electrophoresis and a plot from melt curve analysis, which had not been previously conducted in Eurasian pygmy owls. We found that only primer set CHD1F/CHD1R proved reliable, as the only one determined sex with one and two band/s and peak/s on the electrophoresis and the melt curve plot for males and females, respectively. The other two primer pairs failed and depicted one band/peak in all specimens regardless of their sex. Therefore, we recommend performing Eurasian pygmy owls' laboratory sexing by qPCR with CHD1F/CHD1R primers only.


Assuntos
Primers do DNA , Análise para Determinação do Sexo , Estrigiformes , Animais , Análise para Determinação do Sexo/métodos , Feminino , Masculino , Estrigiformes/genética , Primers do DNA/genética
2.
Ecol Evol ; 14(3): e11155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476705

RESUMO

Agricultural intensification and climate change are serious threats toward animal populations worldwide. Agricultural intensification reduces the heterogeneity of agricultural habitats by diminishing crop variation and destroying microhabitats, such as small woody features, whereas the effects of climate change range from the growing frequency of weather extremes to disrupted prey-predator dynamics. We collected long-term ringing data from a population of Eurasian kestrels (Falco tinnunculus) located amidst agricultural areas in western Finland during 1985-2021, which we combined with density indices of their main prey species (voles), spatial data consisting of land cover classification of kestrel territories, and weather data, to study the effects of different environmental drivers on breeding density and success. We found that the density of inhabited nests rose with vole abundance and springtime snow depth, with the overall trend of population growth being stronger in areas with more heterogeneous landscapes. Clutch size was influenced negatively by the age of male parent and landscape heterogeneity, and positively by vole abundance, with rainfall having a negative influence conditional to other variables. Likewise, the number of produced fledglings was affected by male age, but it was additionally positively associated with landscape heterogeneity and its interaction with rainfall, with greater fledgling output in heterogeneous landscapes during high precipitation. The discrepancy between factors predicting large clutches and high numbers of fledglings suggests that while kestrels do not prefer heterogeneous landscapes when prospecting for territories, heterogeneous habitats provide better circumstances for foraging during the nestling period, which ensures nestling survival, particularly during adverse environmental conditions. Therefore, breeding in areas under intense agricultural use is more suboptimal to kestrels than their territory preferences would indicate. As changing climate may reduce prey availability and heighten the probability of weather extremities, agricultural intensification may lead to weaker reproductive success in densely populated farmland habitats.

3.
Front Vet Sci ; 11: 1356549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384962

RESUMO

Background: Owls have been reported as definitive hosts, whereas wild small mammals (naturally and experimentally) as intermediate hosts of several species of Sarcocystis. Recently, dead fledglings were found infected by an unnamed species of Sarcocystis since its intermediate host was unknown. After collecting additional samples of owls and wild small mammals, the present study focused on elucidating the identity, potential intermediate host, and complete life cycle of the found Sarcocystis through experimentally infected rodents. The developmental stages' morphological and molecular characterizations (28S rRNA gene, ITS1 region) are presented herein. Methods: In total, 21 Tengmalm's owl carcasses (15 nestlings, 5 fledglings, and 1 adult male) were collected in Kauhava (west-central Finland) and parasitologically examined by wet mounts. Intestinal mucosa scrapings were used to isolate oocysts/sporocysts and employed for experimental infections in dexamethasone-immunosuppressed BALB/cOlaHsd mice. Additionally, sarcocysts were searched in the skeletal muscle of 95 samples from seven wild small mammal species. All these developmental stages were molecularly characterized by the 28S rRNA gene and ITS1 region. Experimental infections were carried out by using immunosuppressed female 8-week-old BALB/cOlaHsd mice, divided into three groups: (1) water with 15 µg/mL of dexamethasone, (2) water with 30 µg/mL of dexamethasone, (3) no dexamethasone treatment. Each group consisted of four individuals. In each group, two mice were infected with 1,000 sporocysts each, and the remaining two with 10,000 sporocysts each. All mice were euthanized on specific days post-infection. Results: The intestinal mucosa of 11 nestlings and 5 fledglings of the Tengmalm's owl were positive for Sarcocystis funereus sp. nov. The adult male owl and all owls' breast and heart muscles were negative for Sarcocystis. Two dexamethasone-immunosuppressed BALB/cOlaHsd mice (group 2) were positive to S. funereus sp. nov. in diaphragm and leg muscles after 22- and 24-day post-infection. Some sarcocysts were found in the wild small mammals. Molecular identification at 28S rRNA revealed sequences from naturally infected Tengmalm's owls, as well as sarcocysts of dexamethasone-immunosuppressed BALB/cOlaHsd mice were 99.87-100% similar to Sarcocystis sp. isolate Af1 previously found in the Tengmalm's owl. At the ITS1 region, the S. funereus sp. nov. isolates Af2 haplotype B and Af3 haplotype A were 98.77-100% identical to Sarcocystis sp. isolate Af1. The sequences from sarcocysts of naturally infected wild small mammals were 75.23-90.30% similar at ITS1 region to those of S. funereus sp. nov. Conclusion: The morphological and molecular characterizations and phylogenetic placement of S. funereus sp. nov. are presented here for the first time and support the erection of the new species.

4.
Nat Commun ; 13(1): 5517, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167683

RESUMO

Climate change is increasing the frequency of extreme events, such as droughts or hurricanes, with substantial impacts on human and wildlife communities. Extreme events can affect individuals through two pathways: by altering the fitness of adults encountering a current extreme, and by affecting the development of individuals born during a natal extreme, a largely overlooked process. Here, we show that the impact of natal drought on an avian predator overrode the effect of current drought for decades, so that individuals born during drought were disadvantaged throughout life. Incorporation of natal effects caused a 40% decline in forecasted population size and a 21% shortening of time to extinction. These results imply that climate change may erode populations more quickly and severely than currently appreciated, suggesting the urgency to incorporate "penalties" for natal legacies in the analytical toolkit of impact forecasts. Similar double impacts may apply to other drivers of global change.


Assuntos
Mudança Climática , Secas , Animais , Aves , Humanos , Recém-Nascido , Densidade Demográfica
5.
J Anim Ecol ; 91(7): 1489-1506, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470435

RESUMO

In vertebrates, thyroid hormones (THs) play an important role in the regulation of growth, development, metabolism, photoperiodic responses and migration. Maternally transferred THs are important for normal early phase embryonic development when embryos are not able to produce endogenous THs. Previous studies have shown that variation in maternal THs within the physiological range can influence offspring phenotype. Given the essential functions of maternal THs in development and metabolism, THs may be a mediator of life-history variation across species. We tested the hypothesis that differences in life histories are associated with differences in maternal TH transfer across species. Using birds as a model, we specifically tested whether maternally transferred yolk THs covary with migratory status, developmental mode and traits related to pace-of-life (e.g. basal metabolic rate, maximum life span). We collected un-incubated eggs (n = 1-21 eggs per species, median = 7) from 34 wild and captive bird species across 17 families and six orders to measure yolk THs [both triiodothyronine (T3) and thyroxine (T4)], compiled life-history trait data from the literature and used Bayesian phylogenetic mixed models to test our hypotheses. Our models indicated that both concentrations and total amounts of the two main forms of THs (T3 and T4) were higher in the eggs of migratory species compared to resident species, and total amounts were higher in the eggs of precocial species, which have longer prenatal developmental periods, than in those of altricial species. However, maternal yolk THs did not show clear associations with pace-of-life-related traits, such as fecundity, basal metabolic rate or maximum life span. We quantified interspecific variation in maternal yolk THs in birds, and our findings suggest higher maternal TH transfer is associated with the precocial mode of development and migratory status. Whether maternal THs represent a part of the mechanism underlying the evolution of precocial development and migration or a consequence of such life histories is currently unclear. We therefore encourage further studies to explore the physiological mechanisms and evolutionary processes underlying these patterns.


Assuntos
Hormônios Tireóideos , Tri-Iodotironina , Animais , Teorema de Bayes , Aves , Filogenia , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo
6.
Sci Rep ; 11(1): 18893, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556766

RESUMO

Physical condition is important for the ability to resist various parasites and diseases as well as in escaping predators thus contributing to reproductive success, over-winter survival and possible declines in wildlife populations. However, in-depth research on trends in body condition is rare because decades-long datasets are not available for a majority of species. We analysed the long-term dataset of offspring covering 34 years, male parents (40 years) and female parents (42 years) to find out whether the decline of Tengmalm's owl population in western Finland is attributable to either decreased adult and/or juvenile body condition in interaction with changing weather conditions and density estimates of main foods. We found that body condition of parent owl males and females declined throughout the 40-year study period whereas the body condition of owlets at the fledging stage very slightly increased. The body condition of parent owls increased with augmenting depth of snow cover in late winter (January to March), and that of offspring improved with increasing precipitation in late spring (May to June). We conclude that the decreasing trend of body condition of parent owl males and females is important factor probably inducing reduced adult survival and reduced reproduction success thus contributing to the long-term decline of the Tengmalm's owl study population. The very slightly increasing trend of body condition of offspring is obviously not able to compensate the overall decline of Tengmalm's owl population, because the number of offspring in turn simultaneously decreased considerably in the long-term. The ongoing climate change appeared to work in opposite ways in this case because declining depth of snow cover will make the situation worse but increased precipitation will improve. We suggest that the main reasons for long-term decline of body condition of parent owls are interactive or additive effects of reduced food resources and increased overall predation risk due to habitat degradation (loss and fragmentation of mature and old-growth forests due to clear-felling) subsequently leading to decline of Tengmalm's owl study population.


Assuntos
Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Aptidão Física/fisiologia , Estrigiformes/fisiologia , Animais , Mudança Climática , Conjuntos de Dados como Assunto , Feminino , Finlândia , Florestas , Masculino , Dinâmica Populacional/estatística & dados numéricos , Dinâmica Populacional/tendências , Comportamento Predatório , Reprodução , Estações do Ano
7.
Biol Lett ; 17(7): 20210286, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34256584

RESUMO

Food-hoarding behaviour is widespread in the animal kingdom and enables predictable access to food resources in unpredictable environments. Within species, consistent variation among individuals in food-hoarding behaviours may indicate the existence of individual strategies, as it likely captures intrinsic differences in how individuals cope with risks (e.g. starvation, pilferage). Using 17 years of data, we estimated the long-term repeatability of 10 food-hoarding behaviours in a population of Eurasian pygmy owls (Glaucidium passerinum), a small avian predator subject to high temporal fluctuations in its main prey abundance. We found low repeatability in the proportion of shrews and the average prey mass stored for both sexes, while females were moderately repeatable in the mass and the number of prey items stored. These two pairs of behaviours were tightly correlated among individuals and might represent two different sets of individual strategies to buffer against starvation risks.


Assuntos
Colecionismo , Estrigiformes , Animais , Feminino , Alimentos , Cadeia Alimentar , Masculino , Comportamento Predatório
9.
Front Vet Sci ; 8: 804096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004932

RESUMO

Background: Birds act as intermediate or definitive hosts of cyst-forming coccidia parasites of the genus Sarcocystis Lankester, 1882. However, the spectrum of species of Sarcocystis in birds and the role of the latter in the transmission of coccidia are still incomplete for many avian species, including the Tengmalm's owl Aegolius funereus (Linnaeus, 1758). During the research on Tengmalm's owls in Finland, some fledglings were found dead and subsequently parasitologically examined. Therefore, this study is focused on the morphological and molecular description of a Sarcocystis species found in the intestine of the Tengmalm's owl and its possible role as a definitive host. Methods: Eleven fledgling owls in the Kauhava region of west-central Finland were found dead and subsequently were submitted for necropsy and parasitologically examined through the flotation-centrifugation coprological technique for the presence of oocysts/sporocysts of the genus Sarcocystis by light microscopy. Wet mounts were used for the examination of muscle samples (breast, legs, and heart). Polymerase chain reaction (PCR) and nested-PCR were carried out using primers for 18S rRNA, 28S rRNA, ITS1 region, and CO1 genes. Results: All 11 examined owls were parasitized by numerous sporocysts and oocysts in the intestinal mucosa scrapings (prevalence, 100%). Sporulated oocysts and sporocysts measured 16.34-16.96 × 11.47-12.09 µm and 11.85-13.52 × 7.77-9.25 µm, respectively. The skeletal and heart muscles were negative for sarcocysts. Sarcocystis sp. ex Aegolius funereus (hereafter Sarcocystis sp. Af) is closely related to Sarcocystis strixi in the barred owl (Strix varia Barton, 1799) from the USA and Sarcocystis sp. isolate 5 in the European shrew (Sorex araneus Linnaeus, 1758) from the Czech Republic. Phylogenetic analysis allowed determining the relationship of the herein reported Sarcocystis sp. with its congeners. Conclusions: This work provided the first and most comprehensive record on Sarcocystis from owls obtained in Finland, thus highlighting the importance of molecular data in species identification.

10.
Sci Rep ; 10(1): 20429, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235236

RESUMO

Recent wildlife population declines are usually attributed to multiple sources such as global climate change and habitat loss and degradation inducing decreased food supply. However, interactive effects of fluctuations in abundance of main foods and weather conditions on population densities and reproductive success have been studied rarely. We analysed long-term (1973-2018) data on Tengmalm's owl (Aegolius funereus) and the influence of prey abundance and weather on breeding densities and reproductive success in western Finland. We found that fledgling production per breeding attempt declined and laying date of the owl population delayed during the period between 1973 and 2018. The breeding density of the owl population decreased with increasing temperature in winter (October-March), fledgling production increased with increasing temperature and precipitation in spring (April-June), whereas the initiation of egg-laying was delayed with increasing depth of snow cover in late winter (January-March). The decreasing trend of fledgling production, which was mainly due to starvation of offspring, was an important factor contributing to the long-term decline of the Tengmalm's owl study population. Milder and more humid spring and early summer temperatures due to global warming were not able to compensate for lowered offspring production of owls. The main reason for low productivity is probably loss and degradation of mature and old-growth forests due to clear-felling which results in loss of coverage of prime habitat for main (bank voles) and alternative foods (small birds) of owls inducing lack of food, and refuges against predators of Tengmalm's owls. This interpretation was also supported by the delayed start of egg-laying during the study period although ambient temperatures increased prior to and during the egg-laying period.


Assuntos
Comportamento Predatório/fisiologia , Reprodução , Estrigiformes/fisiologia , Ração Animal , Animais , Comportamento Animal , Cruzamento , Mudança Climática , Finlândia , Densidade Demográfica , Estações do Ano
11.
PLoS One ; 15(9): e0236155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915780

RESUMO

Large brains in prey may select for adoption of anti-predator behavior that facilitates escape. Prey species with relatively large brains have been shown to be less likely to fall prey to predators. This results in the prediction that individuals that have been captured by predators on average should have smaller brains than sympatric conspecifics. We exploited the fact that Eurasian pygmy owls Glaucidium passerinum hoard small mammals and birds in cavities and nest-boxes for over-winter survival, allowing for comparison of the phenotype of prey with that of live conspecifics. In Northern Europe, main prey of pygmy owls are voles of the genera Myodes and Microtus, while forest birds and shrews are the most important alternative prey. Large fluctuations (amplitude 100-200-fold) in vole populations induce rapid numerical responses of pygmy owls to main prey populations, which in turn results in varying predation pressure on small birds. We found, weighed and measured 153 birds in food-stores of pygmy owls and mist-netted, weighed and measured 333 live birds of 12 species in central-western Finland during two autumns with low (2017) and high (2018) pygmy owl predation risk. In two autumns, individuals with large brains were captured later compared to individuals with small brains, consistent with the hypothesis that such individuals survived for longer. Avian prey of pygmy owls had smaller heads than live birds in autumn 2018 when predation risk by pygmy owls was high. This difference in head size was not significant in 2017 when predation risk by pygmy owls was reduced. Finally, avian survivors were in better body condition than avian prey individuals. These findings are consistent with the hypothesis that pygmy owls differentially prey on birds in poor condition with small brains. These findings are consistent with the hypothesis that predation risk imposed by pygmy owls on small birds in boreal forests varies depending on the abundance of the main prey (voles).


Assuntos
Comportamento Predatório , Estrigiformes , Animais , Arvicolinae/fisiologia , Encéfalo/fisiologia , Feminino , Masculino , Tamanho do Órgão , Estações do Ano , Musaranhos/fisiologia , Estrigiformes/fisiologia , Taiga
12.
Sci Rep ; 10(1): 14465, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879335

RESUMO

It is much debated whether the direct effects of weather or biotic interactions determine species' responses to climate change. For example, an important biotic factor for herbivores in northern ecosystems is the availability of winter food. If the food availability changes because of the changing climate, it likely has major impact on the abundance of herbivores. To evaluate this, we need to know the relative roles of weather and biotic interactions, such as food availability and risk of predation, for the species. Here, we utilize long-term data on nest-box occupancy by Siberian flying squirrels (Pteromys volans) in Finland during 2002-2018. We built binary models with nest-box occupancy in different seasons as a response variable. Weather, winter food (tree mast), and predator presence (the Ural owl, Strix uralensis) modified seasonal nest-box occupancy patterns of the flying squirrel. However, the effect of weather was only important in the summer. The negative effect of predators was clear for adults but, surprisingly, not for overwinter survival of apparent juveniles. Considering the relative importance of different factors, winter food availability had a clear positive effect in each season. Our study supports the view that the effects of climate change mediate through multiple biotic interactions. In forest ecosystems, responses of masting trees to weather likely play an important role in species responses to climate change.

13.
Glob Chang Biol ; 26(10): 5414-5430, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738026

RESUMO

Changing climate can modify predator-prey interactions and induce declines or local extinctions of species due to reductions in food availability. Species hoarding perishable food for overwinter survival, like predators, are predicted to be particularly susceptible to increasing temperatures. We analysed the influence of autumn and winter weather, and abundance of main prey (voles), on the food-hoarding behaviour of a generalist predator, the Eurasian pygmy owl (Glaucidium passerinum), across 16 years in Finland. Fewer freeze-thaw events in early autumn delayed the initiation of food hoarding. Pygmy owls consumed more hoarded food with more frequent freeze-thaw events and deeper snow cover in autumn and in winter, and lower precipitation in winter. In autumn, the rotting of food hoards increased with precipitation. Hoards already present in early autumn were much more likely to rot than the ones initiated in late autumn. Rotten food hoards were used more in years of low food abundance than in years of high food abundance. Having rotten food hoards in autumn resulted in a lower future recapture probability of female owls. These results indicate that pygmy owls might be partly able to adapt to climate change by delaying food hoarding, but changes in the snow cover, precipitation and frequency of freeze-thaw events might impair their foraging and ultimately decrease local overwinter survival. Long-term trends and future predictions, therefore, suggest that impacts of climate change on wintering food-hoarding species could be substantial, because their 'freezers' may no longer work properly. Altered usability and poorer quality of hoarded food may further modify the foraging needs of food-hoarding predators and thus their overall predation pressure on prey species. This raises concerns about the impacts of climate change on boreal food webs, in which ecological interactions have evolved under cold winter conditions.


Assuntos
Colecionismo , Estrigiformes , Animais , Mudança Climática , Feminino , Finlândia , Cadeia Alimentar , Comportamento Predatório
14.
Oecologia ; 192(3): 699-711, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32008080

RESUMO

Fluctuations in the abundance of main prey species might shape animal communities, by inducing numerical responses and dietary shifts in predators. Whether numerical responses and dietary shifts differ among individuals of different age and sex has so far gained little attention. These differences could affect how much predators consume main and alternative prey, thus causing variation in predation pressure on main and alternative prey species. We studied the effect of fluctuating main prey abundance (voles) in autumn on the age and sex composition of a food-hoarding population of Eurasian pygmy owls Glaucidium passerinum (327 individuals), and on the species composition of their food stores in western Finland during 2003-2017 (629 food stores). Numbers of yearlings (< 1-year old) of both sexes and adult (+ 1-year old) females increased with increasing vole abundance. During low vole abundance, adult owls stored more small birds and less small mammals than yearlings. Females stored more small mammals than males and showed a tendency to store less birds. The amount of consumed birds (the most important alternative prey), and in particular of crested, willow, great, and blue tits, increased with low vole densities. Our results show that numerical, functional, and total responses of pygmy owls, and probably also other vertebrate predators, to the availability of the main prey in winter are shaped by the age and sex composition of the predator population, which both show large spatio-temporal variation in boreal forests.


Assuntos
Comportamento Predatório , Estrigiformes , Animais , Arvicolinae , Feminino , Finlândia , Cavalos , Masculino , Dinâmica Populacional
15.
Oecologia ; 191(4): 861-871, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667601

RESUMO

Climatic conditions, trophic links between species and dispersal may induce spatial synchrony in population fluctuations. Spatial synchrony increases the extinction risk of populations and, thus, it is important to understand how synchrony-inducing mechanisms affect populations already threatened by habitat loss and climate change. For many species, it is unclear how population fluctuations vary over time and space, and what factors potentially drive this variation. In this study, we focus on factors determining population fluctuations and spatial synchrony in the Siberian flying squirrel, Pteromys volans, using long-term monitoring data from 16 Finnish populations located 2-400 km apart. We found an indication of synchronous population dynamics on a large scale in flying squirrels. However, the synchrony was not found to be clearly related to distance between study sites because the populations seemed to be strongly affected by small-scale local factors. The regularity of population fluctuations varied over time. The fluctuations were linked to changes in winter precipitation, which has previously been linked to the reproductive success of flying squirrels. Food abundance (tree mast) and predator abundance were not related to population fluctuations in this study. We conclude that spatial synchrony was not unequivocally related to distance in flying squirrels, as has been observed in earlier studies for more abundant rodent species. Our study also emphasises the role of climate in population fluctuations and the synchrony of the species.


Assuntos
Ecossistema , Árvores , Animais , Finlândia , Dinâmica Populacional , Sciuridae
16.
J Exp Biol ; 222(Pt 19)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548290

RESUMO

Mothers may vary resource allocation to eggs and embryos, which may affect offspring fitness and prepare them for future environmental conditions. The effects of food availability and predation risk on reproduction have been extensively studied, yet their simultaneous impacts on reproductive investment and offspring early life conditions are still unclear. We experimentally manipulated these key environmental elements using a 2×2 full factorial design in wild, free-living pied flycatchers (Ficedula hypoleuca), and measured egg composition, eggshell traits and offspring condition. Eggs laid in food-supplemented nests had larger yolks and thicker shells independently of predation risk, while eggs laid in nests exposed to predator cues had lower levels of immunoglobulins, independent of food supplementation. In nests without predator cues, shell biliverdin content was higher in eggs laid in food-supplemented nests. Incubation was 1 day shorter in food-supplemented nests and shorter incubation periods were associated with higher hatching success, but there were no direct effects of maternal treatment on hatching success. To investigate the impact of maternal treatment (via egg composition) on the offspring, we performed full brood cross-fostering after hatching to unmanipulated nests. Maternal treatment did not significantly affect body mass and immunoglobulin levels of offspring. Our results suggest that although prenatal maternal cues affected egg composition, these egg-mediated effects may not have detectable consequences for offspring growth or immune capacity. Unpredictable environmental stressors may thus affect parental investment in the eggs, but parental care may level off costs and benefits of differential maternal egg allocation.


Assuntos
Casca de Ovo/fisiologia , Alimentos , Óvulo/fisiologia , Passeriformes/fisiologia , Comportamento Predatório/fisiologia , Risco , Animais , Comportamento Animal , Cruzamento , Feminino , Imunoglobulinas/metabolismo , Modelos Lineares
17.
Front Zool ; 16: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31406493

RESUMO

BACKGROUND: Selecting high-quality habitat and the optimal time to reproduce can increase individual fitness and is a strong evolutionary factor shaping animal populations. However, few studies have investigated the interplay between land cover heterogeneity, limitation in food resources, individual quality and spatial variation in fitness parameters. Here, we explore how individuals of different quality respond to possible mismatches between a cue for prey availability (land cover heterogeneity) and the actual fluctuating prey abundance. RESULTS: We analyse timing of breeding and reproductive success in a migratory population of Eurasian kestrels (Falco tinnunculus) breeding in nest-boxes, over a full three-year abundance cycle of main prey (voles), and consider several components of individual quality, including body condition, blood parasite infection, and genetic diversity (n = 448 adults) that act on different time scales. Older individuals, and kestrel parents in higher body condition started egg-laying earlier than younger birds and those in lower body condition. Additionally, egg-laying was initiated earlier during the increase and decrease phases (2011 and 2012) than during the low phase of the vole cycle (2013). Nestling survival (ratio of eggs that fledged successfully) was higher in early nests and in heterogeneous landscapes (i.e., mosaic of different habitat types), which was evident during the increase and decrease phases of the vole cycle, but not during the low vole year. CONCLUSIONS: We found a strong positive effect of landscape heterogeneity on nestling survival, but only when voles were relatively abundant, whereas a difference in the timing of breeding related to territory landscape heterogeneity was not evident. Therefore, landscape heterogeneity appeared as the main driver of high reproductive performance under favourable food conditions. Our results show that landscape homogenization linked to agricultural intensification disrupts the expected positive effect of vole abundance on reproductive success of kestrels.

18.
Physiol Biochem Zool ; 91(3): 837-848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494281

RESUMO

Prolonged physiological stress response may lead to an excessive production of reactive oxygen species (ROS) and ultimately to oxidative stress and severe fitness costs. We investigated whether natural variation in predation risk, induced by pygmy owls (Glaucidium passerinum), modifies the oxidative status of two free-living food-supplemented passerine bird species-the great tit (Parus major) and the willow tit (Poecile montanus)-in March 2012 and 2013. Predation risk significantly affected antioxidant enzyme activities of willow tits. Antioxidant enzyme activities (principal component factor 2 [PC2] representing glutathione-S-transferase and superoxide dismutase activities) were higher in high predation risk areas in 2013 than in low predation risk areas in the same year. Higher enzyme activities may suggest higher ROS production in birds living under high predation risk. In addition, antioxidant enzyme activities (PC2) were also higher in high predation risk areas in 2013 than in high predation risk areas in the previous year, 2012. This may represent variation in the risk represented by pygmy owls, which is probably inversely related to the natural fluctuations in the densities of their main prey, voles. In willow tits, PC1 (representing catalase, total glutathione, the ratio of reduced to oxidized glutathione, and protein carbonylation) was not affected by perceived predation risk, nor were antioxidant levels or enzyme activities in great tits. Higher enzyme activities observed in willow tits suggest that predator presence can modify the antioxidant status of avian prey, but the response also seem to be influenced by other environmental characteristics, like harsh winter conditions.


Assuntos
Antioxidantes/metabolismo , Ecossistema , Passeriformes/fisiologia , Comportamento Predatório , Struthioniformes/fisiologia , Animais , Animais Selvagens , Estresse Oxidativo/fisiologia
19.
PLoS One ; 13(3): e0194624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596438

RESUMO

Habitat choice often entails trade-offs between food availability and predation risk. Understanding the distribution of individuals in space thus requires that both habitat characteristics and predation risk are considered simultaneously. Here, we studied the nest box use of two arboreal squirrels who share preferred habitat with their main predators. Nocturnal Ural owls (Strix uralensis) decreased occurrence of night-active flying squirrels (Pteromys volans) and diurnal goshawks (Accipiter gentilis) that of day-active red squirrels (Sciurus vulgaris). Unexpectedly, the amount of preferred habitat had no effect on nest box use, but, surprisingly, both squirrel species seemed to benefit from close proximity to agricultural fields and red squirrels to urban areas. We found no evidence of trade-off between settling in a high-quality habitat and avoiding predators. However, the amount of poor-quality young pine forests was lower in occupied sites where goshawks were present, possibly indicating habitat specific predation on red squirrels. The results suggest that erecting nest boxes for Ural owls should be avoided in the vicinity of flying squirrel territories in order to conserve the near threatened flying squirrels. Our results also suggest that flying squirrels do not always need continuous old forests, and hence the currently insufficient conservation practices could be improved with reasonable increases in the areas left untouched around their nests. The results of this study demonstrate the importance of taking into account both habitat requirements and predation risk as well as their interactive effects when modeling the occupancy of threatened animal species and planning their conservation.


Assuntos
Ecossistema , Comportamento de Nidação , Sciuridae , Animais , Comportamento de Escolha , Alimentos , Florestas , Picea , Comportamento Predatório , Medição de Risco
20.
Glob Chang Biol ; 23(4): 1361-1373, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27371812

RESUMO

There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food-store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability.


Assuntos
Cadeia Alimentar , Chuva , Estrigiformes , Animais , Mudança Climática , Feminino , Finlândia , Florestas , Masculino , Comportamento Predatório , Taiga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...