Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1391, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228676

RESUMO

This study investigates the last two centuries sedimentation dynamics in four high-altitude lakes located in Southern Carpathians, Romania. Furthermore, a novel approach is proposed for identifying the anthropic or natural underlying causes, by comparison of the acceleration of the change in sedimentation rate with a baseline growth rate trend provided by an isolated peat bog. The high-resolution chronologies were developed using the 210Pb dating technique and the CRS model. 137Cs alternative time-marker validated the age-depth models and reassured the quality of the results. The results indicated several short-interval high sedimentation events within the lake cores, yielding up to five times the average rate for the investigated period. The cause of the high sedimentation episodes was generally attributed to anthropic activities (primarily road construction) and extreme natural events. A first-order derivative equation was employed to plot the acceleration in the sedimentation rate of the lakes with the peat bog baseline. The discrepancies between the acceleration trends highlighted significant deviations from the natural variation tendencies and provided preliminary data regarding the underlying causes of the intense sedimentation periods.

2.
Sci Rep ; 12(1): 6796, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474321

RESUMO

The study of local extinction times, together with the associated environmental and human population changes in the last glacial termination, provides insights into the causes of mega- and microfauna extinctions. In East-Central (EC) Europe, groups of Palaeolithic humans were present throughout the last glacial maximum, but disappeared suddenly around 15,200 cal BP. In this study cave sediment profiles dated using radiocarbon techniques and a large set of mammal bones dated directly by AMS 14C were used to determine local extinction times. These were, in turn, compared to changes in the total megafauna population of EC Europe derived from coprophilous fungi, the Epigravettian population decline, quantitative climate models, pollen and plant macrofossil inferred climate, as well as to biome reconstructions. The results suggest that the population size of large herbivores decreased in the area after 17,700 cal BP, when temperate tree abundance and warm continental steppe cover both increased in the lowlands. Boreal forest expansion started around 16,200 cal BP. Cave sediments show the decline of narrow-headed vole and arctic lemming populations specifically associated with a tundra environment at the same time and the expansion of the common vole, an inhabitant of steppes. The last dated appearance of arctic lemming was at ~ 16,640 cal BP, while that of the narrow-headed vole at ~ 13,340, and the estimated extinction time of woolly mammoth was either at 13,830 (GRIWM) or 15,210 (PHASE), and reindeer at 11,860 (GRIWM) or 12,550 cal BP (PHASE). The population decline of the large herbivore fauna slightly preceded changes in terrestrial vegetation, and likely facilitated it via a reduction in the intensity of grazing and the concomitant accumulation of plant biomass. Furthermore, it is possible to conclude that the Late Epigravettian population had high degree of quarry-fidelity; they left the basin when these mammals vanished.


Assuntos
Ecossistema , Mamutes , Animais , Arvicolinae , Clima , Humanos , Mamíferos , Tundra
3.
Ecol Evol ; 11(21): 14658-14668, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765132

RESUMO

Repeatability is the cornerstone of science, and it is particularly important for systematic reviews. However, little is known on how researchers' choice of database, and search platform influence the repeatability of systematic reviews. Here, we aim to unveil how the computer environment and the location where the search was initiated from influence hit results.We present a comparative analysis of time-synchronized searches at different institutional locations in the world and evaluate the consistency of hits obtained within each of the search terms using different search platforms.We revealed a large variation among search platforms and showed that PubMed and Scopus returned consistent results to identical search strings from different locations. Google Scholar and Web of Science's Core Collection varied substantially both in the number of returned hits and in the list of individual articles depending on the search location and computing environment. Inconsistency in Web of Science results has most likely emerged from the different licensing packages at different institutions.To maintain scientific integrity and consistency, especially in systematic reviews, action is needed from both the scientific community and scientific search platforms to increase search consistency. Researchers are encouraged to report the search location and the databases used for systematic reviews, and database providers should make search algorithms transparent and revise access rules to titles behind paywalls. Additional options for increasing the repeatability and transparency of systematic reviews are storing both search metadata and hit results in open repositories and using Application Programming Interfaces (APIs) to retrieve standardized, machine-readable search metadata.

5.
PLoS One ; 15(10): e0239209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002077

RESUMO

Recent decades have been marked by unprecendented environmental changes which threaten the integrity of freshwater systems and their ecological value. Although most of these changes can be attributed to human activities, disentagling natural and anthropogenic drivers remains a challenge. In this study, surface sediments from Lake Ighiel, a mid-altitude site in the Carpathian Mts (Romania) were investigated following high-resolution sedimentological, geochemical, environmental magnetic and diatom analyses supported by historical cartographic and documentary evidence. Our results suggest that between 1920 and 1960 the study area experienced no significant anthropogenic impact. An excellent correspondence is observed between lake proxy responses (e.g., growth of submerged macrophytes, high detrital input, shifts in diatom assemblages) and parameters tracking natural hydroclimate variability (e.g., temperature, NAO). This highlights a dominant natural hydroclimatic control on the lacustrine system. From 1960 however, the depositional regime shifted markedly from laminated to homogenous clays; since then geochemical and magnetic data document a trend of significant (and on-going) subsurface erosion across the catchment. This is paralleled by a shift in lake ecosystem conditions denoting a strong response to an intensified anthropogenic impact, mainly through forestry. An increase in detrital input and marked changes in the diatom community are observed over the last three decades, alongside accelerated sedimentation rates following enhanced grazing and deforestation in the catchment. Recent shifts in diatom assemblages may also reflect forcing from atmospheric nitrogen (N) deposition, a key recent drive of diatom community turnover in mountain lakes. In general, enhanced human pressure alongside intermittent hydroclimate forcing drastically altered the landscape around Lake Ighiel and thus, the sedimentation regime and the ecosystem's health. However, paleoenvironmental signals tracking natural hydroclimate variability are also clearly discernible in the proxy data. Our work illustrates the complex link between the drivers of catchment-scale impacts on one hand, and lake proxy responses on the other, highlighting the importance of an integrated historical and palaeolimnological approach to better assess lake system changes.


Assuntos
Mudança Climática , Lagos , Altitude , Mudança Climática/história , Conservação dos Recursos Naturais , Diatomáceas , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/análise , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Lagos/análise , Recursos Naturais , Nitrogênio/análise , Romênia
6.
Sci Total Environ ; 743: 140584, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758817

RESUMO

A multiproxy approach including chironomid, diatom, pollen and geochemical analyses was applied on short gravitational cores retrieved from an alpine lake (Lacul Bâlea) in the Southern Carpathians (Romania) to unveil how this lake responded to natural and anthropogenic forcing over the past 500 years. On the basis of chironomid and diatom assemblage changes, and supported by sediment chemical data and historical information, we distinguished two main phases in lake evolution. Before 1926 the lake was dominated by chironomids belonging to Micropsectra insignilobus-type and benthic diatoms suggesting well-oxygenated oligotrophic environment with only small-scale disturbance. We considered this state as the lake's safe operational space. After 1926 significant changes occurred: Tanytarsus lugens-type and T. mendax-type chironomids took over dominance and collector filterers increased until 1970 pointing to an increase in available nutrients. The diatom community showed the most pronounced change between 1950 and 1992 when planktonic diatoms increased. The highest trophic level was reconstructed between 1970 and 1992, while the indicator species of increasing nutrient availability, Asterionella formosa spread from 1982 and decreased rapidly at 1992. Statistical analyses evidenced that the main driver of the diatom community change was atmospheric reactive nitrogen (Nr) fertilization that drastically moved the community towards planktonic diatom dominance from 1950. The transformation of the chironomid community was primarily driven by summer mean temperature increase that also changed the dominant feeding guild from collector gatherers to collector filterers. Our results overall suggest that the speed of ecosystem reorganisation showed an unprecedented increase over the last 100 years; biological systems in many cases underwent threshold type changes, while several system components displayed non-hysteretic change between alternating community composition. We conclude that Lake Bâlea is outside of its safe operating space today. The main trigger of changes since 1926 was climate change and human impact acting synergically.

7.
Ecol Evol ; 10(1): 320-335, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993118

RESUMO

Saline lakes, among the most seriously endangered ecosystems, are threatened due to climate change and human activities. One valuable feature of these environments is that they constitute areas of high biodiversity. Ecologists are, therefore, under great pressure to improve their understanding of the effects of natural and anthropogenic disturbances on the biodiversity of saline lakes. In this study, a total of 257 samples from 32 soda pans in Central Europe between 2006 and 2015 were examined. The effects of environmental variables and of geographical and limnoecological factors on functional diversity were analyzed. Furthermore, the explanatory power of the trait-based approach was assessed, and the applicability of the indices for biomonitoring purposes was determined. It was found that low habitat heterogeneity and harsh environments lead to the selection of a small number of suitable traits, and consequently, to a naturally low level of functional diversity. Anthropogenic activities enhance diversity at functional level due to the shift toward freshwater characteristics. On the regional scale, the effects of the region and status (natural, degraded, reconstructed) on diatom functional diversity were significant and more pronounced than that of the environmental and other limnoecological factors. The degree of variance found in functional diversity ascribed to environmental variables is five times greater in the case of the application of a trait-based approach, than when a taxonomic one is employed in the literature. Each of the tested functional diversity indices was sensitive to the most important environmental variables. Furthermore, these were type-specific and proved to be more complex indicators than taxonomic metrics. It is possible to suggest four functional diversity indices (FGR, FRic, FDis, and FDiv) which emphasize their independence from substrate and seasonal variations for ecological status assessment and conservation planning.

8.
Sci Data ; 4: 170101, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786983

RESUMO

Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...