Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 396(1): 95-102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347202

RESUMO

The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of polyamines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated receptors, generally assumed to be responsible for detecting amines. Zebrafish possess over one hundred of these receptors, but the responses of olfactory sensory neurons to amines have not been known so far. Here we examined odor responses of zebrafish olfactory epithelial explants at the cellular level, employing calcium imaging. We report that amines elicit strong responses in olfactory sensory neurons, with a time course characteristically different from that of ATP-responsive (basal) cells. A quantitative analysis of the laminar height distribution shows amine-responsive cells undistinguishable from ciliated neurons positive for olfactory marker protein. This distribution is significantly different from those measured for microvillous neurons positive for transient receptor potential channel 2 and basal cells positive for proliferating cell nuclear antigen. Our results suggest amines as an important odor class for teleost fish.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Peixe-Zebra/metabolismo , Cálcio/metabolismo , Aminas/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo
2.
Gene Expr Patterns ; 4(2): 191-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15161099

RESUMO

Tubulin, the building block of microtubules, consists of an alpha and beta subunit, each in itself a family of several highly homologous isotypes. Abundance, tissue specificity, developmental regulation, and possibly function vary between isotypes. Six isotypes of beta tubulin (class I to class VI) have been cloned from several vertebrate species. Class I beta tubulin is believed to be widely expressed, but has not been studied by in situ hybridization in any vertebrate species so far. We have cloned a beta tubulin from zebrafish that appears most similar to other vertebrate class I tubulins and name it zbeta1 tubulin, accordingly. We report a distinct expression pattern of zbeta1 tubulin in the zebrafish embryo in restricted regions of the peripheral and central nervous system that comprise early-differentiating neurons. The expression pattern changes during development and in the adult zebrafish expression mostly is confined to a subset of proliferative zones that include the subependymal zone around the telencephalic ventricle, zones in the preoptic and hypothalamic area and in the olfactory epithelium. Thus, zbeta1 tubulin is expressed with remarkable selectivity during neuronal differentiation and neurogenesis in the embryonic and adult nervous system, respectively.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Expressão Gênica/fisiologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Peixe-Zebra/genética , Animais , Sequência de Bases , Divisão Celular/fisiologia , Evolução Molecular , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Bulbo Olfatório/metabolismo , Filogenia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
3.
Eur J Neurosci ; 15(5): 798-806, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11906521

RESUMO

The olfactory nervous system of fish, in particular zebrafish, has become a valid model for that of higher vertebrates. However, no genetic markers for olfactory specific cell types, e.g. the olfactory receptor neurons, have been established in this species. Olfactory marker protein (OMP) is a reliable marker for olfactory receptor neurons in several other vertebrates. We have cloned zOMP, the zebrafish homologue of olfactory marker protein. During development, zOMP is expressed exclusively in the olfactory placode, presumably in olfactory receptor neurons, as shown by in situ hybridization. In the adult nasal epithelium zOMP is found restricted to the sensory region. zOMP appears to be a single gene, without close family members. The 5'-flanking region lacks most of the expected regulatory sequence motifs, both general and cell type-specific ones. Nevertheless, it drives reporter gene expression strongly and specifically in olfactory receptor neurons during the whole developmental period examined. Thus the zOMP promoter constitutes a powerful tool which should be useful to selectively introduce a wide variety of genetic modifications into olfactory receptor neurons.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Marcação de Genes/métodos , Proteínas do Tecido Nervoso/genética , Neurônios Receptores Olfatórios/metabolismo , Regiões Promotoras Genéticas/genética , Peixe-Zebra/metabolismo , Animais , Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Embrião não Mamífero , Vetores Genéticos/genética , Larva , Proteínas Luminescentes/genética , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Proteína de Marcador Olfatório , Neurônios Receptores Olfatórios/embriologia , Neurônios Receptores Olfatórios/crescimento & desenvolvimento , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Células-Tronco/citologia , Células-Tronco/metabolismo , Transgenes/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra
4.
Physiol Behav ; 74(3): 253-5, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11714486

RESUMO

An inexpensive headholder for mice ranging from 3-week-old animals to adults was designed to provide reliable long-term head fixation. Its shape allows the direct access to the dorsal and ventral sides of the head which makes the headholder ideal for the use with both an upright and an inverted microscope. Because the headholder does not use a nose clamp, the apparatus allows surgery, stimulation of the olfactory system and concomitant optical recording of neuronal activity.


Assuntos
Mapeamento Encefálico/instrumentação , Restrição Física/instrumentação , Animais , Desenho de Equipamento , Camundongos , Bulbo Olfatório/fisiologia , Fotomicrografia/instrumentação , Olfato/fisiologia
5.
J Neurosci ; 21(21): 8396-407, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11606628

RESUMO

The structural determinants of an odor molecule necessary and/or sufficient for interaction with the cognate olfactory receptor(s) are not known. Olfactory receptor neurons expressing the same olfactory receptor converge in the olfactory bulb. Thus, optical imaging of neuronal activity in the olfactory bulb can visualize at once the contributions by all the different olfactory receptors responsive to a particular odorant. We have used this technique to derive estimates about the structural requirements and minimal number of different zebrafish olfactory receptors that respond to a series of naturally occurring amino acids and some structurally related compounds. We report that the alpha-carboxyl group, the alpha-amino group, and l-conformation of the amino acid are all required for activation of amino acid-responsive receptors. Increasing carbon chain length recruits successively more receptors. With increasing concentrations, the activity patterns induced by a homolog series of amino acids became more similar to each other. At intermediate concentrations patterns were unique across substances and across concentrations. The introduction of a terminal amino group (charged) both recruits additional receptors and prevents binding to some of the receptors that were responsive to the unsubstituted analog. In contrast, the introduction of a beta-hydroxyl group (polar) excluded the odorants from some of the receptors that are capable of binding the unsubstituted analog. Cross-adaptation experiments independently confirmed these results. Thus, odorant detection requires several different receptors even for relatively simple odorants such as amino acids, and individual receptors require the presence of some molecular features, the absence of others, and tolerate still other molecular features.


Assuntos
Mapeamento Encefálico , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Corantes Fluorescentes , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Hidroxiácidos/farmacologia , Masculino , Conformação Molecular , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Compostos Orgânicos , Terminações Pré-Sinápticas/metabolismo , Receptores Odorantes/metabolismo , Estimulação Química , Relação Estrutura-Atividade , Especificidade por Substrato , Peixe-Zebra
6.
Cell Mol Life Sci ; 58(4): 520-30, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11361087

RESUMO

The olfactory sense detects and distinguishes a multitude of different odors. Recent progress in molecular as well as physiological approaches has elucidated basic principles of neuronal encoding of odorants, common to insects and vertebrates. The construction of neuronal representations for odors begins with the task of mapping the multidimensional odor space onto the two-dimensional sensory surface, and subsequently onto the olfactory bulb or antennal lobe. A distributed expression of odorant receptors, albeit restricted to subregions of the sensory surface (large, intermediate or small for zebrafish, mouse or drosophila, respectively), ensures a robust representation, insensitive to mechanical insult. Olfactory receptor neurons expressing the same odorant receptors converge to form a receptotopic map in the olfactory bulb or antennal lobe. The emerging coding principle is a chemotopic representation of odorants at the first brain level, realized either as combinatorial or as monospecific representation, depending on the odorant.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Humanos , Neurônios Receptores Olfatórios/metabolismo
7.
J Neurosci ; 18(23): 9977-88, 1998 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9822753

RESUMO

Odor information is first represented in the brain by patterns of input activity across the glomeruli of the olfactory bulb (OB). To examine how odorants are represented at this stage of olfactory processing, we labeled anterogradely the axons of olfactory receptor neurons with the voltage-sensitive dye Di8-ANEPPQ in zebrafish. The activity induced by diverse natural odorants in afferent axons and across the array of glomeruli was then recorded optically. The results show that certain subregions of the OB are preferentially activated by defined chemical odorant classes. Within these subregions, "ordinary" odorants (amino acids, bile acids, and nucleotides) induce overlapping activity patterns involving multiple glomeruli, indicating that they are represented by combinatorial activity patterns. In contrast, two putative pheromone components (prostaglandin F2alpha and 17alpha, 20beta-dihydroxy-4-pregnene-3-one-20-sulfate) each induce a single focus of activity, at least one of which comes from a single, highly specific and sensitive glomerulus. These results indicate that the OB is organized into functional subregions processing classes of odorants. Furthermore, they suggest that individual odorants can be represented by "combinatorial" or "noncombinatorial" (focal) activity patterns and that the latter may serve to process odorants triggering distinct responses such as that of pheromones.


Assuntos
Axônios/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Animais , Ácidos e Sais Biliares , Estimulação Elétrica , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Nucleotídeos , Odorantes , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/fisiologia , Neurônios Receptores Olfatórios/ultraestrutura , Feromônios/fisiologia , Compostos de Piridínio , Peixe-Zebra
8.
Neuron ; 18(5): 737-52, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9182799

RESUMO

Odors are thought to be represented by a distributed code across the glomerular modules in the olfactory bulb (OB). Here, we optically imaged presynaptic activity in glomerular modules of the zebrafish OB induced by a class of natural odorants (amino acids [AAs]) after labeling of primary afferents with a calcium-sensitive dye. AAs induce complex combinatorial patterns of active glomerular modules that are unique for different stimuli and concentrations. Quantitative analysis shows that defined molecular features of stimuli are correlated with activity in spatially confined groups of glomerular modules. These results provide direct evidence that identity and concentration of odorants are encoded by glomerular activity patterns and reveal a coarse chemotopic organization of the array of glomerular modules.


Assuntos
Bulbo Olfatório/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia , Peixe-Zebra/fisiologia , Aminoácidos/farmacologia , Animais , Cálcio/metabolismo , Denervação , Relação Dose-Resposta a Droga , Processamento de Imagem Assistida por Computador , Análise Multivariada , Regeneração Nervosa/fisiologia , Bulbo Olfatório/citologia , Nervo Olfatório/citologia , Nervo Olfatório/fisiologia , Neurônios Receptores Olfatórios/química , Neurônios Receptores Olfatórios/fisiologia , Terminações Pré-Sinápticas/química , Terminações Pré-Sinápticas/fisiologia , Receptores Odorantes/efeitos dos fármacos
9.
Semin Cell Dev Biol ; 8(2): 181-7, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15001094

RESUMO

Zebrafish, Danio rerio, possess a well-developed sense of smell which governs a variety of behaviors. Both the number of odorant receptor genes and the number of modules in the olfactory bulb (glomeruli) are about an order of magnitude smaller than those of mammals. Nevertheless, the spatial organization of functional properties within the sensory surface and the olfactory bulb are comparable to those of mammals. The quantitatively reduced olfactory system of zebrafish, together with the suitability of this species for developmental and genetic studies, make zebrafish an interesting model system to study olfactory differentiation and neuronal representation of olfactory information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...