Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 297(2): 100915, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174287

RESUMO

The thiazide-sensitive sodium-chloride cotransporter (NCC) in the renal distal convoluted tubule (DCT) plays a critical role in regulating blood pressure (BP) and K+ homeostasis. During hyperkalemia, reduced NCC phosphorylation and total NCC abundance facilitate downstream electrogenic K+ secretion and BP reduction. However, the mechanism for the K+-dependent reduction in total NCC levels is unknown. Here, we show that NCC levels were reduced in ex vivo renal tubules incubated in a high-K+ medium for 24-48 h. This reduction was independent of NCC transcription, but was prevented using inhibitors of the proteasome (MG132) or lysosome (chloroquine). Ex vivo, high K+ increased NCC ubiquitylation, but inhibition of the ubiquitin conjugation pathway prevented the high K+-mediated reduction in NCC protein. In tubules incubated in high K+ media ex vivo or in the renal cortex of mice fed a high K+ diet for 4 days, the abundance and phosphorylation of heat shock protein 70 (Hsp70), a key regulator of ubiquitin-dependent protein degradation and protein folding, were decreased. Conversely, in similar samples the expression of PP1α, known to dephosphorylate Hsp70, was also increased. NCC coimmunoprecipitated with Hsp70 and PP1α, and inhibiting their actions prevented the high K+-mediated reduction in total NCC levels. In conclusion, we show that hyperkalemia drives NCC ubiquitylation and degradation via a PP1α-dependent process facilitated by Hsp70. This mechanism facilitates K+-dependent reductions in NCC to protect plasma K+ homeostasis and potentially reduces BP.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Hipertensão/patologia , Túbulos Renais Distais/metabolismo , Potássio na Dieta/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteólise , Transdução de Sinais , Membro 3 da Família 12 de Carreador de Soluto/genética , Ubiquitinação
3.
Kidney Int ; 100(2): 321-335, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940111

RESUMO

The thiazide-sensitive sodium-chloride-cotransporter (NCC) in the kidney distal convoluted tubule (DCT) plays an essential role in sodium and potassium homeostasis. Here, we demonstrate that NCC activity is increased by the ß2-adrenoceptor agonist salbutamol, a drug prevalently used to treat asthma. Relative to ß1-adrenergic receptors, the ß2-adrenergic receptors were greatly enriched in mouse DCT cells. In mice, administration of salbutamol increased NCC phosphorylation (indicating increased activity) within 30 minutes but also caused hypokalemia, which also increases NCC phosphorylation. In ex vivo kidney slices and isolated tubules, salbutamol increased NCC phosphorylation in the pharmacologically relevant range of 0.01-10 µM, an effect observed after 15 minutes and maintained at 60 minutes. Inhibition of the inwardly rectifying potassium channel (Kir) 4.1 or the downstream with-no-lysine kinases (WNKs) and STE20/SPS1-related proline alanine-rich kinase (SPAK) pathway greatly attenuated, but did not prevent, salbutamol-induced NCC phosphorylation. Salbutamol increased cAMP in tubules, kidney slices and mpkDCT cells (model of DCT). Phosphoproteomics indicated that protein phosphatase 1 (PP1) was a key upstream regulator of salbutamol effects. A role for PP1 and the PP1 inhibitor 1 (I1) was confirmed in tubules using inhibitors of PP1 or kidney slices from I1 knockout mice. On normal and high salt diets, salbutamol infusion increased systolic blood pressure, but this increase was normalized by thiazide suggesting a role for NCC. Thus, ß2-adrenergic receptor signaling modulates NCC activity via I1/PP1 and WNK-dependent pathways, and chronic salbutamol administration may be a risk factor for hypertension.


Assuntos
Albuterol , Simportadores de Cloreto de Sódio , Agonistas Adrenérgicos/metabolismo , Albuterol/metabolismo , Albuterol/farmacologia , Animais , Pressão Sanguínea , Túbulos Renais Distais/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
4.
Am J Physiol Renal Physiol ; 320(5): F908-F921, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779313

RESUMO

The hormone aldosterone is essential for maintaining K+ and Na+ balance and controlling blood pressure. Aldosterone has different effects if it is secreted due to hypovolemia or hyperkalemia. The kidney distal convoluted tubule (DCT) is believed to play a central role in mediating the differential responses to aldosterone. To determine the alterations in the DCT that may be responsible for these effects, male mice with green fluorescent protein expression specifically in the DCT were maintained on diets containing low NaCl (hypovolemic state) or high potassium citrate (hyperkalemic state) for 4 days, and DCT cells were isolated using fluorescence-activated cell sorting. This pure population of DCT cells was subjected to analysis by liquid chromatography-coupled tandem mass spectrometry. Over 3,000 proteins were identified in the DCT, creating the first proteome of the mouse DCT. Of the identified proteins, 210 proteins were altered in abundance following a low-NaCl diet and 625 proteins following the high-K+ diet. Many of these changes were not detectable by analyzing whole kidney samples from the same animals. When comparing responses to high-K+ versus low-Na+ diets, protein translation, chaperone-mediated protein folding, and protein ubiquitylation were likely to be significantly altered in the DCT subsequent to a high-K+ diet. In conclusion, this study defines an in vivo protein landscape of the DCT in male mice following either a low-NaCl or a high-K+ diet and acts as an essential resource for the kidney research community.NEW & NOTEWORTHY The mineralocorticoid aldosterone, essential for maintaining body K+ and Na+ balance, has different effects if secreted due to hypovolemia or hyperkalemia. Here, we used proteomics to profile kidney distal convoluted tubule (DCT) cells isolated by a novel FACS approach from mice fed a low-Na+ diet (mimicking hypovolemia) or a high-K+ diet (mimicking hyperkalemia). The study provides the first in-depth proteome of the mouse DCT and insights into how it is physiologically regulated.


Assuntos
Túbulos Renais Distais/fisiologia , Potássio na Dieta/administração & dosagem , Potássio na Dieta/farmacologia , Proteínas/metabolismo , Sódio na Dieta/administração & dosagem , Sódio na Dieta/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Potássio/administração & dosagem , Potássio/farmacologia , Sódio/administração & dosagem , Sódio/farmacologia
5.
Front Physiol ; 12: 787598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126177

RESUMO

Arginine vasopressin (AVP) stimulates the concentration of renal urine by increasing the principal cell expression of aquaporin-2 (AQP2) water channels. Prostaglandin E2 (PGE2) and prostaglandin2α (PGF2α) increase the water absorption of the principal cell without AVP, but PGE2 decreases it in the presence of AVP. The underlying mechanism of this paradoxical response was investigated here. Mouse cortical collecting duct (mkpCCDc14) cells mimic principal cells as they endogenously express AQP2 in response to AVP. PGE2 increased AQP2 abundance without desmopressin (dDAVP), while in the presence of dDAVP, PGE2, and PGF2α reduced AQP2 abundance. dDAVP increased the cellular PGD2 and PGE2 release and decreased the PGF2α release. MpkCCD cells expressed mRNAs for the receptors of PGE2 (EP1/EP4), PGF2 (FP), and TxB2 (TP). Incubation with dDAVP increased the expression of EP1 and FP but decreased the expression of EP4. In the absence of dDAVP, incubation of mpkCCD cells with an EP4, but not EP1/3, agonist increased AQP2 abundance, and the PGE2-induced increase in AQP2 was blocked with an EP4 antagonist. Moreover, in the presence of dDAVP, an EP1/3, but not EP4, agonist decreased the AQP2 abundance, and the addition of EP1 antagonists prevented the PGE2-mediated downregulation of AQP2. Our study shows that in mpkCCDc14 cells, reduced EP4 receptor and increased EP1/FP receptor expression by dDAVP explains the differential effects of PGE2 and PGF2α on AQP2 abundance with or without dDAVP. As the V2R and EP4 receptor, but not the EP1 and FP receptor, can couple to Gs and stimulate the cyclic adenosine monophosphate (cAMP) pathway, our data support a view that cells can desensitize themselves for receptors activating the same pathway and sensitize themselves for receptors of alternative pathways.

6.
Am J Physiol Renal Physiol ; 314(2): F230-F239, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070571

RESUMO

Lithium, given to bipolar disorder patients, causes nephrogenic diabetes insipidus (Li-NDI), a urinary-concentrating defect. Li-NDI occurs due to downregulation of principal cell AQP2 expression, which coincides with principal cell proliferation. The metabolic effect of lithium on principal cells, however, is unknown and investigated here. In earlier studies, we showed that the carbonic anhydrase (CA) inhibitor acetazolamide attenuated Li-induced downregulation in mouse-collecting duct (mpkCCD) cells. Of the eight CAs present in mpkCCD cells, siRNA and drug treatments showed that downregulation of CA9 and to some extent CA12 attenuated Li-induced AQP2 downregulation. Moreover, lithium induced cell proliferation and increased the secretion of lactate. Lithium also increased urinary lactate levels in wild-type mice that developed Li-NDI but not in lithium-treated mice lacking ENaC, the principal cell entry site for lithium. Inhibition of aerobic glycolysis with 2-deoxyglucose (2DG) attenuated lithium-induced AQP2 downregulation in mpkCCD cells but did not attenuate Li-NDI in mice. Interestingly, NMR analysis demonstrated that lithium also increased the urinary succinate, fumarate, citrate, and NH4+ levels, which were, in contrast to lactate, not decreased by 2DG. Together, our data reveal that lithium induces aerobic glycolysis and glutaminolysis in principal cells and that inhibition of aerobic glycolysis, but not the glutaminolysis, does not attenuate Li-NDI.


Assuntos
Antimaníacos/toxicidade , Diabetes Insípido Nefrogênico/induzido quimicamente , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Cloreto de Lítio/toxicidade , Acetazolamida/farmacologia , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Linhagem Celular , Desoxiglucose/farmacologia , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Nefrogênico/patologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
J Am Soc Nephrol ; 29(3): 936-948, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242247

RESUMO

The importance of the kidney distal convoluted tubule (DCT) and cortical collecting duct (CCD) is highlighted by various water and electrolyte disorders that arise when the unique transport properties of these segments are disturbed. Despite this critical role, little is known about which proteins have a regulatory role in these cells and how these cells can be regulated by individual physiologic stimuli. By combining proteomics, bioinformatics, and cell biology approaches, we found that the E3 ubiquitin ligase CHIP is highly expressed throughout the collecting duct; is modulated in abundance by vasopressin; interacts with aquaporin-2 (AQP2), Hsp70, and Hsc70; and can directly ubiquitylate the water channel AQP2 in vitro shRNA knockdown of CHIP in CCD cells increased AQP2 protein t1/2 and reduced AQP2 ubiquitylation, resulting in greater levels of AQP2 and phosphorylated AQP2. CHIP knockdown increased the plasma membrane abundance of AQP2 in these cells. Compared with wild-type controls, CHIP knockout mice or novel CRISPR/Cas9 mice without CHIP E3 ligase activity had greater AQP2 abundance and altered renal water handling, with decreased water intake and urine volume, alongside higher urine osmolality. We did not observe significant changes in other water- or sodium-transporting proteins in the gene-modified mice. In summary, these results suggest that CHIP regulates AQP2 and subsequently, renal water handling.


Assuntos
Aquaporina 2/metabolismo , Homeostase/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Água/metabolismo , Animais , Células Cultivadas , Ontologia Genética , Inativação Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos , Proteômica , Ubiquitinação
8.
PLoS One ; 12(4): e0176220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28430812

RESUMO

Animal studies have shown that the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus can activate the thiazide-sensitive NaCl cotransporter (NCC). A common side effect of CNIs is hypertension. Renal salt transporters such as NCC are excreted in urinary extracellular vesicles (uEVs) after internalization into multivesicular bodies. Human studies indicate that CNIs also increase NCC abundance in uEVs, but results are conflicting and no relationship with NCC function has been shown. Therefore, we investigated the effects of CsA and Tac on the abundance of both total NCC (tNCC) and phosphorylated NCC at Thr60 phosphorylation site (pNCC) in uEVs, and assessed whether NCC abundance in uEVs predicts the blood pressure response to thiazide diuretics. Our results show that in kidney transplant recipients treated with cyclosporine (n = 9) or tacrolimus (n = 23), the abundance of both tNCC and pNCC in uEVs is 4-5 fold higher than in CNI-free kidney transplant recipients (n = 13) or healthy volunteers (n = 6). In hypertensive kidney transplant recipients, higher abundances of tNCC and pNCC prior to treatment with thiazides predicted the blood pressure response to thiazides. During thiazide treatment, the abundance of pNCC in uEVs increased in responders (n = 10), but markedly decreased in non-responders (n = 8). Thus, our results show that CNIs increase the abundance of both tNCC and pNCC in uEVs, and these increases correlate with the blood pressure response to thiazides. This implies that assessment of NCC in uEVs could represent an alternate method to guide anti-hypertensive therapy in kidney transplant recipients.


Assuntos
Inibidores de Calcineurina/farmacologia , Simportadores de Cloreto de Sódio/metabolismo , Tiazidas/farmacologia , Animais , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Camundongos , Camundongos Endogâmicos C57BL
9.
J Am Soc Nephrol ; 27(7): 2082-91, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26574046

RESUMO

To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects.


Assuntos
Acetazolamida/uso terapêutico , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diuréticos/uso terapêutico , Compostos de Lítio/efeitos adversos , Amilorida/uso terapêutico , Animais , Aquaporina 2/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Simportadores de Cloreto de Sódio/uso terapêutico
10.
Sci Rep ; 5: 12829, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26239621

RESUMO

The kidney distal convoluted tubule (DCT) plays an essential role in maintaining body sodium balance and blood pressure. The major sodium reabsorption pathway in the DCT is the thiazide-sensitive NaCl cotransporter (NCC), whose functions can be modulated by the hormone vasopressin (VP) acting via uncharacterized signaling cascades. Here we use a systems biology approach centered on stable isotope labeling by amino acids in cell culture (SILAC) based quantitative phosphoproteomics of cultured mouse DCT cells to map global changes in protein phosphorylation upon acute treatment with a VP type II receptor agonist 1-desamino-8-D-arginine vasopressin (dDAVP). 6330 unique proteins, containing 12333 different phosphorylation sites were identified. 185 sites were altered in abundance following dDAVP. Basophilic motifs were preferential targets for upregulated sites upon dDAVP stimulation, whereas proline-directed motifs were prominent for downregulated sites. Kinase prediction indicated that dDAVP increased AGC and CAMK kinase families' activities and decreased activity of CDK and MAPK families. Network analysis implicated phosphatidylinositol-4,5-bisphosphate 3-kinase or CAMKK dependent pathways in VP-mediated signaling; pharmacological inhibition of which significantly reduced dDAVP induced increases in phosphorylated NCC at an activating site. In conclusion, this study identifies unique VP signaling cascades in DCT cells that may be important for regulating blood pressure.


Assuntos
Redes Reguladoras de Genes , Túbulos Renais Distais/efeitos dos fármacos , Receptores de Vasopressinas/genética , Transdução de Sinais , Vasopressinas/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Desamino Arginina Vasopressina/farmacologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica , Transporte de Íons/efeitos dos fármacos , Marcação por Isótopo , Túbulos Renais Distais/citologia , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Receptores de Vasopressinas/metabolismo , Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Biologia de Sistemas , Tiazidas/farmacologia , Técnicas de Cultura de Tecidos
11.
J Biol Chem ; 289(19): 13347-61, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24668812

RESUMO

The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-ß-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.


Assuntos
Clatrina/metabolismo , Endocitose/fisiologia , Ubiquitinação/fisiologia , Animais , Clatrina/genética , Cães , Humanos , Transporte de Íons/fisiologia , Células Madin Darby de Rim Canino , Fosforilação/fisiologia , Ratos , Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
12.
Biochim Biophys Acta ; 1840(5): 1533-49, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24342488

RESUMO

BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW: This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS: Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics. GENERAL SIGNIFICANCE: In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.


Assuntos
Aquaporinas/metabolismo , Rim/metabolismo , Equilíbrio Hidroeletrolítico , Sequência de Aminoácidos , Aquaporinas/química , Aquaporinas/genética , Homeostase , Humanos , Dados de Sequência Molecular , Mutação
13.
Am J Physiol Renal Physiol ; 306(5): F525-33, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24352504

RESUMO

Lithium is the most common cause of nephrogenic diabetes insipidus (Li-NDI). Hydrochlorothiazide (HCTZ) combined with amiloride is the mainstay treatment in Li-NDI. The paradoxical antidiuretic action of HCTZ in Li-NDI is generally attributed to increased sodium and water uptake in proximal tubules as a compensation for increased volume loss due to HCTZ inhibition of the Na-Cl cotransporter (NCC), but alternative actions for HCTZ have been suggested. Here, we investigated whether HCTZ exerted an NCC-independent effect in Li-NDI. In polarized mouse cortical collecting duct (mpkCCD) cells, HCTZ treatment attenuated the Li-induced downregulation of aquaporin-2 (AQP2) water channel abundance. In these cells, amiloride reduces cellular Li influx through the epithelial sodium channel (ENaC). HCTZ also reduced Li influx, but to a lower extent. HCTZ increased AQP2 abundance on top of that of amiloride and did not affect the ENaC-mediated transcellular voltage. MpkCCD cells did not express NCC mRNA or protein. These data indicated that in mpkCCD cells, HCTZ attenuated lithium-induced downregulation of AQP2 independently of NCC and ENaC. Treatment of Li-NDI NCC knockout mice with HCTZ revealed a significantly reduced urine volume, unchanged urine osmolality, and increased cortical AQP2 abundance compared with Li-treated NCC knockout mice. HCTZ treatment further resulted in reduced blood Li levels, creatinine clearance, and alkalinized urinary pH. Our in vitro and in vivo data indicate that part of the antidiuretic effect of HCTZ in Li-NDI is NCC independent and may involve a tubuloglomerular feedback response-mediated reduction in glomerular filtration rate due to proximal tubular carbonic anhydrase inhibition.


Assuntos
Diabetes Insípido Nefrogênico/tratamento farmacológico , Hidroclorotiazida/farmacologia , Túbulos Renais Coletores/efeitos dos fármacos , Simportadores de Cloreto de Sódio/metabolismo , Amilorida/metabolismo , Animais , Aquaporina 2/metabolismo , Células Cultivadas , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/metabolismo , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Lítio/farmacologia , Camundongos
14.
Am J Physiol Renal Physiol ; 305(12): F1705-18, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24154696

RESUMO

Binding of vasopressin to its type 2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin (AQP)2 water channels to the plasma membrane, and water reabsorption from the prourine. Demeclocycline is currently used to treat hyponatremia in patients with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Demeclocycline's mechanism of action, which is poorly understood, is studied here. In mouse cortical collecting duct (mpkCCD) cells, which exhibit deamino-8-D-arginine vasopressin (dDAVP)-dependent expression of endogenous AQP2, demeclocycline decreased AQP2 abundance and gene transcription but not its protein stability. Demeclocycline did not affect vasopressin type 2 receptor localization but decreased dDAVP-induced cAMP generation and the abundance of adenylate cyclase 3 and 5/6. The addition of exogenous cAMP partially corrected the demeclocycline effect. As in patients, demeclocycline increased urine volume, decreased urine osmolality, and reverted hyponatremia in an SIADH rat model. AQP2 and adenylate cyclase 5/6 abundances were reduced in the inner medulla but increased in the cortex and outer medulla, in the absence of any sign of toxicity. In conclusion, our in vitro and in vivo data indicate that demeclocycline mainly attenuates hyponatremia in SIADH by reducing adenylate cyclase 5/6 expression and, consequently, cAMP generation, AQP2 gene transcription, and AQP2 abundance in the renal inner medulla, coinciding with a reduced vasopressin escape response in other collecting duct segments.


Assuntos
Aquaporina 2/metabolismo , Demeclociclina/uso terapêutico , Hiponatremia/metabolismo , Hiponatremia/prevenção & controle , Síndrome de Secreção Inadequada de HAD/metabolismo , Síndrome de Secreção Inadequada de HAD/prevenção & controle , Medula Renal/metabolismo , Adenilil Ciclases/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Células Cultivadas , AMP Cíclico/metabolismo , Desamino Arginina Vasopressina/efeitos adversos , Demeclociclina/farmacologia , Modelos Animais de Doenças , Hiponatremia/induzido quimicamente , Técnicas In Vitro , Síndrome de Secreção Inadequada de HAD/induzido quimicamente , Medula Renal/efeitos dos fármacos , Medula Renal/patologia , Masculino , Camundongos , Minociclina/farmacologia , Minociclina/uso terapêutico , Ratos , Ratos Wistar , Vasopressinas/metabolismo
15.
J Physiol ; 591(8): 2205-19, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23359673

RESUMO

Body water balance is regulated via the water channel aquaporin-2 (AQP2), which is expressed in the renal connecting tubule (CNT) and collecting duct (CD). The relative roles of AQP2 in the CNT and CD are not fully understood. To study the role of AQP2 in the CNT we generated a mouse model with CNT-specific AQP2 deletion (AQP2-CNT-knockout (KO)). Confocal laser scanning microscopy and immunogold electron microscopy demonstrated an absence of AQP2 in the CNT of AQP2-CNT-KO mice. Twenty-four hour urine output was significantly increased (KO: 3.0 ± 0.3 ml (20 g body weight (BW))(-1); wild-type (WT): 1.9 ± 0.3 ml (20 g BW)(-1)) and urine osmolality decreased (KO: 1179 ± 107 mosmol kg(-1); WT: 1790 ± 146 mosmol kg(-1)) in AQP2-CNT-KO mice compared with controls. After 24 h water restriction, urine osmolality was still significantly lower in AQP2-CNT-KO mice (KO: 2087 ± 169 mosmol kg(-1); WT: 2678 ± 144 mosmol kg(-1)). A significant difference in urine osmolality between groups before desmopressin (dDAVP) (KO: 873 ± 129 mosmol kg(-1); WT: 1387 ± 163 mosmol kg(-1)) was not apparent 2 h after injection, with urine osmolality increased significantly in both groups (KO: 2944 ± 41 mosmol kg(-1); WT: 3133 ± 66 mosmol kg(-1)). Cortical kidney fractions from AQP2-CNT-KO mice had significantly reduced AQP2, with no compensatory changes in sodium potassium chloride cotransporter (NKCC2), AQP3 or AQP4. Lithium chloride treatment increased urine volume and decreased osmolality in both WT and AQP2-CNT-KO mice. After 8 days of treatment, the AQP2-CNT-KO mice still had a significantly higher urine volume and lower urine osmolality, suggesting that the CNT does not play a significant role in the pathology of lithium-induced nephrogenic diabetes insipidus. Our studies indicate that the CNT plays a role in regulating body water balance under basal conditions, but not for maximal concentration of the urine during antidiuresis.


Assuntos
Aquaporina 2/fisiologia , Túbulos Renais Coletores/fisiologia , Água/metabolismo , Animais , Cloreto de Lítio/farmacologia , Camundongos , Camundongos Knockout , Concentração Osmolar
16.
Am J Physiol Renal Physiol ; 302(11): F1395-401, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22419689

RESUMO

Urine concentration involves the hormone vasopressin (AVP), which stimulates cAMP production in renal principal cells, resulting in translocation and transcription of aquaporin-2 (AQP2) water channels, greatly increasing the water permeability, leading to a concentrated urine. As cAMP levels decrease shortly after AVP addition, whereas AQP2 levels still increase and are maintained for days, we investigated in the present study the mechanism responsible for the AQP2 increase after long-term 1-desamino-8-d-arginine vasopressin (dDAVP) application using mouse collecting duct (mpkCCD) cells. While 30 min of dDAVP incubation strongly increased cAMP, cAMP was lower with 1 day and was even further reduced with 4 days of dDAVP, although still significantly higher than in control cells. One day of dDAVP incubation increased AQP2 promoter-dependent transcription, which was blocked by the protein kinase A (PKA) inhibitor H89. Moreover, phosphorylation of the cAMP-responsive element binding protein (CREB) and CRE-dependent transcription was observed after short-term dDAVP stimulation. With 4 days of dDAVP, AQP2 transcription remained elevated, but this was not blocked by H89, and CRE-dependent transcription and CREB phosphorylation were not increased. Exchange factor directly activated by cAMP (Epac) 1 and 2 were found to be endogenously expressed in mpkCCD cells. Application of dDAVP increased the expression of Epac1, while Epac2 was reduced. Incubation with a specific Epac activator after dDAVP pretreatment increased both AQP2 abundance and transcription compared with cells left unstimulated the last day. In conclusion, the PKA-CRE pathway is involved in the initial rise in AQP2 levels after dDAVP stimulation but not in the long-term effect of dDAVP. Instead, long-term regulation of AQP2 may involve the activation of Epac.


Assuntos
Aquaporina 2/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Vasopressinas/farmacologia , Animais , Western Blotting , Células Cultivadas , Desamino Arginina Vasopressina/farmacologia , Rim/citologia , Rim/metabolismo , Túbulos Renais Coletores/metabolismo , Luciferases/metabolismo , Camundongos , Fármacos Renais/farmacologia , Transdução de Sinais/fisiologia , Transcrição Gênica/efeitos dos fármacos , Transfecção
17.
Am J Physiol Cell Physiol ; 302(1): C131-40, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21881002

RESUMO

Vasopressin (AVP)-stimulated translocation and transcription of aquaporin-2 (AQP2) water channels in renal principal cells is essential for urine concentration. Twenty percent of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder in which the kidney is unable to concentrate urine. In vivo and in mouse collecting duct (mpkCCD) cells, lithium treatment coincides with decreased AQP2 abundance and inactivation of glycogen synthase kinase (Gsk) 3ß. This is paralleled in vivo by an increased renal cyclooxygenase 2 (COX-2) expression and urinary prostaglandin PGE(2) excretion. PGE(2) reduces AVP-stimulated water reabsorption, but its precise role in lithium-induced downregulation of AQP2 is unclear. Using mpkCCD cells, we here investigated whether prostaglandins contribute to lithium-induced downregulation of AQP2. In these cells, lithium application reduced AQP2 abundance, which coincided with Gsk3ß inactivation and increased COX-2 expression. Inhibition of COX by indomethacin, leading to reduced PGE(2) and PGF(2α) levels, or dexamethasone-induced downregulation of COX-2 both increased AQP2 abundance, while PGE(2) addition reduced AQP2 abundance. However, lithium did not change the prostaglandin levels, and indomethacin and dexamethasone did not prevent lithium-induced AQP2 downregulation. Further analysis revealed that lithium decreased AQP2 protein abundance, mRNA levels and transcription, while PGE(2) reduced AQP2 abundance by increasing its lysosomal degradation, but not by reducing AQP2 gene transcription. In conclusion, our data reveal that in mpkCCD cells, prostaglandins decrease AQP2 protein stability by increasing its lysosomal degradation, indicating that in vivo paracrine-produced prostaglandins might have a role in lithium-induced NDI via this mechanism. However, lithium affects also AQP2 gene transcription, which is prostaglandin independent.


Assuntos
Aquaporina 2/antagonistas & inibidores , Aquaporina 2/genética , Regulação para Baixo/genética , Lítio/farmacologia , Prostaglandinas/fisiologia , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Camundongos , Transcrição Gênica/efeitos dos fármacos
18.
J Biol Chem ; 286(15): 13002-10, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21324903

RESUMO

The syndrome of inappropriate antidiuretic hormone secretion is characterized by excessive water uptake and hyponatremia. The extent of hyponatremia, however, is less than anticipated, which is ascribed to a defense mechanism, the vasopressin-escape, and is suggested to involve a tonicity-determined down-regulation of the water channel aquaporin-2 (AQP2). The underlying mechanism, however, is poorly understood. To study this, we used the mouse cortical collecting duct (mpkCCD) cell line. MpkCCD cells, transfected with an AQP2-promoter luciferase construct showed a reduced and increased AQP2 abundance and transcription following culture in hypotonic and hypertonic medium, respectively. This depended on tonicity rather than osmolality and occurred independently of the vasopressin analog dDAVP, cAMP levels, or protein kinase A activity. Although prostaglandins and nitric oxide reduced AQP2 abundance, inhibition of their synthesis did not influence tonicity-induced AQP2 transcription. Also, cells in which the cAMP or tonicity-responsive element (CRE/TonE) in the AQP2-promoter were mutated showed a similar response to hypotonicity. Instead, the tonicity-responsive elements were pin-pointed to nucleotides -283 to -252 and -157 to -126 bp. In conclusion, our data indicate that hypotonicity reduces AQP2 abundance and transcription, which occurs independently of vasopressin, cAMP, and the known TonE and CRE in the AQP2-promoter. Increased prostaglandin and nitric oxide, as found in vivo, may contribute to reduced AQP2 in vasopressin-escape, but do not mediate the effect of hypotonicity on AQP2 transcription. Our data suggest that two novel segments (-283 to -252 and -157 to -126 bp) in the AQP2-promoter mediate the hypotonicity-induced AQP2 down-regulation during vasopressin-escape.


Assuntos
Antidiuréticos/farmacologia , Aquaporina 2/biossíntese , AMP Cíclico/metabolismo , Desamino Arginina Vasopressina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Elementos de Resposta/fisiologia , Animais , Aquaporina 2/genética , Linhagem Celular , AMP Cíclico/genética , Regulação para Baixo/genética , Camundongos , Mutação , Óxido Nítrico/biossíntese , Pressão Osmótica/efeitos dos fármacos , Prostaglandinas/biossíntese , Prostaglandinas/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
19.
Am J Physiol Renal Physiol ; 300(3): F761-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21209006

RESUMO

Water homeostasis is regulated by a wide variety of hormones. When in need for water conservation, vasopressin, released from the brain, binds renal principal cells and initiates a signaling cascade resulting in the insertion of aquaporin-2 (AQP2) water channels in the apical membrane and water reabsorption. Conversely, hormones, including extracellular purines and dopamine, antagonize AVP-induced water permeability, but their mechanism of action is largely unknown, which was investigated here. Addition of these hormones to mpkCCD cells decreased total and plasma membrane abundance of AVP-induced AQP2, partly by increasing its internalization to vesicles and lysosomal degradation. This internalization was ubiquitin dependent, because the hormones increased AQP2 ubiquitination, and the plasma membrane localization of AQP2-K270R, which cannot be monoubiquitinated, was unaffected by these hormones. Both hormones also increased AQP2 phosphorylation at S261, which followed ubiquitination, but was not essential for hormone-induced AQP2 degradation. A similar process occurs in vivo, as incubation of dDAVP-treated kidney slices with both hormones also resulted in the internalization and S261 phosphorylation of AQP2. Both hormones also reduced cAMP and AQP2 mRNA levels, suggesting an additional effect on AQP2 gene transcription. Interestingly, phorbol esters only reduced AQP2 through the first pathway. Together, our results indicate that ATP and dopamine counteract AVP-induced water permeability by increasing AQP2 degradation in lysosomes, preceded by ubiquitin-dependent internalization, and by decreasing AQP2 gene transcription by reducing the AVP-induced cAMP levels.


Assuntos
Trifosfato de Adenosina/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dopamina/farmacologia , Túbulos Renais Coletores/metabolismo , Ésteres de Forbol/farmacologia , Vasopressinas/farmacologia , Água/metabolismo , Absorção/efeitos dos fármacos , Absorção/fisiologia , Animais , Aquaporina 2/metabolismo , Aziridinas/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Feminino , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Lisossomos/metabolismo , Modelos Animais , Fosforamidas , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(29): 12195-200, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19587238

RESUMO

Binding of the peptide hormone vasopressin to its type-2 receptor (V2R) in kidney triggers a cAMP-mediated translocation of Aquaporin-2 water channels to the apical membrane, resulting in water reabsorption and thereby preventing dehydration. Mutations in the V2R gene lead to Nephrogenic Diabetes Insipidus (NDI), a disorder in which this process is disturbed, because the encoded, often intrinsically functional mutant V2 receptors are misfolded and retained in the endoplasmic reticulum (ER). Since plasma membrane expression is thought to be essential for V2R activation, cell permeable V2R antagonists have been used to induce maturation and rescue cell surface expression of V2R mutants, after which they need to be displaced by vasopressin for activation. Here, however, we show that 3 novel nonpeptide V2R agonists, but not vasopressin, activate NDI-causing V2R mutants at their intracellular location, without changing their maturation and at a sufficient level to induce the translocation of aquaporin-2 to the apical membrane. Moreover, in contrast to plasma membrane V2R, degradation of intracellular V2R mutants is not increased by their activation. Our data reveal that G protein-coupled receptors (GPCRs) normally active at the plasma membrane can be activated intracellularly and that intracellular activation does not induce their degradation; the data also indicate that nonpeptide agonists constitute highly promising therapeutics for diseases caused by misfolded GPCRs in general, and NDI in particular.


Assuntos
Diabetes Insípido Nefrogênico/metabolismo , Espaço Intracelular/metabolismo , Proteínas Mutantes/metabolismo , Peptídeos/farmacologia , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/metabolismo , Animais , Aquaporina 2/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Desamino Arginina Vasopressina/farmacologia , Cães , Humanos , Espaço Intracelular/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores de Vasopressinas/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...