Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 5(11): e13990, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21085579

RESUMO

The extant beaver, Castor, has played an important role shaping landscapes and ecosystems in Eurasia and North America, yet the origins and early evolution of this lineage remain poorly understood. Here we use a geometric morphometric approach to help re-evaluate the phylogenetic affinities of a fossil skull from the Late Miocene of China. This specimen was originally considered Sinocastor, and later transferred to Castor. The aim of this study was to determine whether this form is an early member of Castor, or if it represents a lineage outside of Castor. The specimen was compared to 38 specimens of modern Castor (both C. canadensis and C. fiber) as well as fossil specimens of C. fiber (Pleistocene), C. californicus (Pliocene) and the early castorids Steneofiber eseri (early Miocene). The results show that the specimen falls outside the Castor morphospace and that compared to Castor, Sinocastor possesses a: 1) narrower post-orbital constriction, 2) anteroposteriorly shortened basioccipital depression, 3) shortened incisive foramen, 4) more posteriorly located palatine foramen, 5) longer rostrum, and 6) longer braincase. Also the specimen shows a much shallower basiocciptal depression than what is seen in living Castor, as well as prominently rooted molars. We conclude that Sinocastor is a valid genus. Given the prevalence of apparently primitive traits, Sinocastor might be a near relative of the lineage that gave rise to Castor, implying a possible Asiatic origin for Castor.


Assuntos
Fósseis , Roedores/anatomia & histologia , Crânio/anatomia & histologia , Animais , China , Feminino , Geografia , Masculino , América do Norte , Filogenia , Roedores/classificação , Roedores/genética , Especificidade da Espécie
2.
J Morphol ; 164(2): 167-211, 1980 May.
Artigo em Inglês | MEDLINE | ID: mdl-30184990

RESUMO

The dermopteran basicranium combines a primitively constructed and oriented auditory bulla formed by ectotympanic, rostral entotympanic, and tubal cartilage with derived features of the middle ear transformer and internal carotid circulation. Living dermopterans possess a primitive eutherian auditory region that has been structurally modified to perceive a lower frequency sound spectrum than probably was utilized by ancestral Mesozoic therians. Perception of the low to midfrequency range is enhanced in Dermoptera by reducing stiffness in the mechanical transformer while maintaining low mass of the component parts. Stiffness has been reduced by (1) development of an epitympanic sinus about four times the volume of the middle ear cavity proper, (2) detachment of the anterior process of the malleus from the ectotympanic, and (3) by delicate suspension of the ear ossicles within the middle ear. We apply to dermopterans a measure of hearing efficiency derived from recent functional studies of the mammalian middle ear that regards the middle ear mechanism as an impedance matching transformer. Calculation of the impedance transformer ratio for Dermoptera suggests that these mammals are relatively efficient in comparison to other eutherians in their ability to match the impedance of cochlear fluids to that of air at the eardrum. Dermopterans theoretically are capable of using over 90% of incident sound energy striking the eardrum at the resonant or natural frequency. Mechanical impedance of the middle ear transformer exerts a minimal influence on hearing efficiency due to low mass, little stiffness, and little frictional resistance. Analysis of measurements of the middle ear transformer published by Gerald Fleischer and integration of these data with current theory on the peripheral hearing mechanism in mammals allow us to propose a model that describes the structural and functional evolution of the mammalian middle ear transformer. Structural changes appear to be correlated with alteration in function from primitive small mammals with stiff middle ear transformers and high frequency dominated hearing to mammals with a wider range in body size with more mobile middle ear transformers and a greater range of frequency perception, often including improved sensitivity to lower frequencies. Mammals employ different anatomical strategies in attainment of increased hearing efficiency and sensitivity. Efficiency is improved by adjustment of lever and areal ratios of the middle ear transformer to achieve an optimum impedance match of external air and cochlear fluids. Sensitivity over a broad frequency spectrum is attained by minimizing mass, stiffness, and frictional resistance of the transformer. The morphology of the auditory region of both living and fossil mammals seems explicable in terms of selection pressure directed toward these ends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...