Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 650: 123703, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38092263

RESUMO

Lung cancer ranks as the second most commonly diagnosed cancer in both men and women worldwide. Despite the availability of diverse diagnostic and treatment strategies, it remains the leading cause of cancer-related deaths globally. The current treatment approaches for lung cancer involve the utilization of first generation (e.g., erlotinib, gefitinib) and second generation (e.g., afatinib) tyrosine kinase inhibitors (TKIs). These TKIs exert their effects by inhibiting a crucial enzyme called tyrosine kinase, which is responsible for cell survival signaling. However, their clinical effectiveness is hindered by limited solubility and oral bioavailability. Nanotechnology has emerged as a significant application in modern cancer therapy. Nanoparticle-based drug delivery systems, including lipid, polymeric, hybrid, inorganic, dendrimer, and micellar nanoparticles, have been designed to enhance the bioavailability, stability, and retention of these drugs within the targeted lung area. Furthermore, these nanoparticle-based delivery systems offer several advantages, such as increased therapeutic efficacy and reduced side effects and toxicity. This review focuses on the recent advancements in drug delivery systems for some of the most important TKIs, shedding light on their potential in improving lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Masculino , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores ErbB/genética , Sistemas de Liberação de Medicamentos , Mutação
2.
AAPS PharmSciTech ; 24(7): 178, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658977

RESUMO

The goal of the study was to produce, optimize, characterize, and compare crizotinib-loaded lipid-polymer hybrid nanoparticles (CL-LPHNPs), representing a novel contribution to the existing literature, and to determine their anticancer activity in non-small cell lung cancer cells (NSCLC). Box-Behnken design was used to investigate the effect of three independent variables: polymer amount (X1), soy phosphatidylcholine (X2), and DSPE-PEG (X3), on three responses: particle size (Y1), polydispersity index (Y2), and zeta potential (Y3). Different parameters were evaluated on the optimized LPHNP formulations such as encapsulation efficiency, drug release study, transmission electron microscopy (TEM) image analysis, and in vitro cell evaluations. The mean particle size of the optimized formulation is between 120 and 220 nm with a PDI< 0.2 and a zeta potential of -10 to -15 mV. The encapsulation efficiency values of crizotinib-loaded PLGA-LPHNPs (CL-PLGA-LPHNPs) and crizotinib-loaded PCL-LPHNPs (CL-PCL-LPHNPs) were 79.25±0.07% and 70.93±1.81%, respectively. Drug release study of CL-PLGA-LPHNPs and CL-PCL-LPHNPs showed a controlled and sustained release pattern as a result of core-shell type. Additionally, after 48 h, CL-PLGA-LPHNPs and CL-PCL-LPHNPs significantly reduced the viability of NCI-H2228 cells compared to free crizotinib. Moreover, CL-PLGA-LPHNPs and CL-PCL-LPHNPs exhibited a significant decrease in RAS, RAF, MEK, and ERK gene/protein expression levels after 48-h incubation. In conclusion, this pioneering study introduces lipid-polymer hybrid nanoparticles containing crizotinib as a novel treatment approach, uniting the advantages of a polymeric core and a lipid shell. The successful formulation optimization using Box-Behnken design yielded nanoparticles with adjustable size, remarkable stability, high drug loading, and a customizable drug release profile. Extensive investigations of key parameters, including particle size, PDI, ZP, TEM analysis, drug release, EE%, and in vitro evaluations, validate the potential of these nanoparticles. Moreover, the examination of two different polymers, PLGA and PCL, highlights their distinct impacts on nanoparticle performance. This research opens up new prospects for advanced therapeutic interventions with lipid-polymer hybrid nanoparticles.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Crizotinibe , Neoplasias Pulmonares/tratamento farmacológico , Lecitinas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...