Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 30(28): 72916-72928, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37184796

RESUMO

In this work, a zwitterionic copolymer hydrogel with adsorption affinity toward anionic dye and cationic trace metal was prepared by a free radical copolymerization of cationic ([3-(methacryloylamino)propyl] trimethylammonium chloride (MPTC)) and anionic (sodium 4-vinylbenzenesulfonate (SVBS)) monomers. Bis[2-(methacryloyloxy)ethyl] phosphate was used as a cross-linker and its effect on the adsorption properties of the prepared hydrogel was evaluated. The prepared materials were characterized by FTIR, XRD, SEM, EDX, and N2 adsorption at 77 K analysis. FTIR and EDX analysis demonstrated the successful preparation of poly(MPTC-co-VBS). XRD and SEM analysis showed that the poly (MPTC-co-VBS) is amorphous and has quasi-honeycomb morphology with large pores. Increasing the amount of the cross-linker enhanced the adsorption of direct blue 71 dye (DB71) and Pb(II) ions. The highest removal of DB71 and Pb(II) was achieved after 2 h using 1.5 g/L of poly(MPTC-co-VBS); however, the optimum solution pH was 3 for DB71 and 5 for Pb(II). The kinetics and isotherm studies illustrated that the surface of poly(MPTC-co-VBS) is heterogenous with small-sized homogenous pitches and the DB71 and Pb(II) adsorption onto poly(MPTC-co-VBS) is favorable. Finally, poly(MPTC-co-VBS) is more efficient in removing DB71 and Pb(II) from aqueous solutions than many other reported adsorbents.


Assuntos
Oligoelementos , Poluentes Químicos da Água , Hidrogéis/química , Chumbo , Polímeros/química , Água , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
3.
ACS Omega ; 7(39): 34810-34823, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211085

RESUMO

The effect of initial salt composition on the formation of zero-valent bimetallic FeCo was investigated in this work. Pure crystalline zero-valent FeCo nanoparticles (NPs) were obtained using either chloride or nitrate salts of both metals. Smaller NPs can be obtained using nitrate salts. Comparing the features of the FeCo prepared at room temperature and the solvothermal method revealed that both materials are almost identical. However, the room-temperature method is simpler, quicker, and saves energy. Energy-dispersive X-ray (EDX) analysis of the FeCo NPs prepared using nitrate salts at room temperature demonstrated the absence of oxygen and the presence and uniform distribution of Fe and Co within the structure with the atomic ratio very close to the initially planned one. The particles were sphere-like with a mean particle size of 7 nm, saturation magnetization of 173.32 emu/g, and surface area of 30 m2/g. The removal of Cu2+ and reactive blue 5 (RB5) by FeCo in a single-component system was conformed to the pseudo-first-order and pseudo-second-order models, respectively. The isotherm study confirmed the ability of FeCo for the simultaneous removal of Cu2+ and RB5 with more selectivity toward Cu2+. The RB5 has a synergistic effect on Cu2+ removal, while Cu2+ has an antagonistic effect on RB5 removal.

4.
RSC Adv ; 12(29): 18923-18935, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873340

RESUMO

This study reports the preparation of a new material that can remove synthetic dyes and trace metals simultaneously. A new coumarin derivative was synthesized and its chemical structure was inferred from spectral data (FT-IR, 1H-NMR, 13C-NMR). Meanwhile, chitosan nanoparticles (CsNPs) were prepared then used as a carrier for two different concentrations of the coumarin derivative (C1@CsNPs and C2@CsNPs). The TEM, SEM and DLS findings illustrated that the prepared nanocomposites exhibited spherical shape and small size (less than 200 nm). The performance of the prepared material for the removal of an anionic dye (direct red 31, DR31) and cationic trace metal (Pb2+) was evaluated in unary and binary systems. The results revealed that complete removal of 10 mg L-1 of DR31 and Pb2+ in unary system was achieved at pHo 3.0 and 5.5 using 0.5 and 2.0 g L-1, respectively, of C2@CsNPs. The adsorption of DR31 and Pb2+ followed different mechanisms as deduced from the effect of pHo, kinetic, isotherm and binary adsorption studies. The adsorption of DR31 followed the Langmuir isotherm model and the pseudo-first-order kinetic model. While, the adsorption of Pb2+ followed Freundlich isotherm model and Elovich kinetic model. In the binary system, the co-presence of DR31 and Pb2+ did not affect the adsorption of each other's. Overall, the prepared material showed promising results for the removal of anionic dyes and cations trace metals from contaminated water.

5.
Environ Sci Pollut Res Int ; 29(51): 77238-77252, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35676578

RESUMO

Water decontamination from toxic dyes and pathogenic microorganisms is critical for life on Earth. Herein, we report the synthesis of sulfone biscompound containing 1,2,3-triazole moiety and evaluation of its dye decolorization and biocidal and disinfection efficiencies. The decolorization efficiency was tested under different experimental conditions, while the biocidal action was examined against various types of waterborne pathogens, and the disinfection of some pathogenic microbes was executed in artificially contaminated water. The findindgs illustrated that the solution initial pH (pHi) affected the decolorization efficiency significantly. About complete removal of 10 mg/L malachite green (MG) dye was achieved after 10 min using 3 g/L of the sulfone biscompound at pHi 6. The pseudo-second-order equation suited the adsorption kinetics accurately, while the equilibrium data was suited by Langmuir isotherm model. Electrostatic, n-π, and π-π interactions brought about the adsorption of MG onto the sulfone biscompound. The biocidal results indicated that the sulfone biscompound had a powerful antibacterial potential against the tested bacterial species. Likewise, the distinction trail revealed that after 70-90 min of direct contact with an effective dose, the tested pathogens could be completely eliminated (6-log reduction). Overall, the newly synthesized sulfone biscompound can efficiently remove cationic dyes and disinfect contaminated water.


Assuntos
Desinfecção , Poluentes Químicos da Água , Triazóis/farmacologia , Corantes/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Água/química , Sulfonas , Antibacterianos , Concentração de Íons de Hidrogênio , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA