Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755014

RESUMO

In emerging epithelial tissues, cells undergo dramatic rearrangements to promote tissue shape changes. Dividing cells remain interconnected via transient cytokinetic bridges. Bridges are cleaved during abscission and currently, the consequences of disrupting abscission in developing epithelia are not well understood. We show that the Rab GTPase Rab25 localizes near cytokinetic midbodies and likely coordinates abscission through endomembrane trafficking in the epithelium of the zebrafish gastrula during epiboly. In maternal-zygotic Rab25a and Rab25b mutant embryos, morphogenic activity tears open persistent apical cytokinetic bridges that failed to undergo timely abscission. Cytokinesis defects result in anisotropic cell morphologies that are associated with a reduction of contractile actomyosin networks. This slows cell rearrangements and alters the viscoelastic responses of the tissue, all of which likely contribute to delayed epiboly. We present a model in which Rab25 trafficking coordinates cytokinetic bridge abscission and cortical actin density, impacting local cell shape changes and tissue-scale forces.


Assuntos
Movimento Celular/genética , Peixe-Zebra/fisiologia , Proteínas rab de Ligação ao GTP/genética , Animais , Citocinese , Embrião não Mamífero/fisiologia , Epitélio/fisiologia , Gástrula/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra , Proteínas rab de Ligação ao GTP/metabolismo
3.
Methods ; 101: 56-64, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515645

RESUMO

Generation of pancreatic ß-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate ß-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultura , Feminino , Humanos , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/transplante , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...