Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epidemiology ; 24(5): 753-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873073

RESUMO

BACKGROUND: Air pollution has been associated with respiratory health effects. There is little direct evidence that reductions in air pollution related to abatement policies lead to actual improvement in respiratory health. We assessed whether a reduction in (traffic policy-related) air pollution concentrations was associated with changes in respiratory health. METHODS: Air pollution concentrations and respiratory health were measured in 2008 and 2010 at eight busy urban streets and at four suburban background control locations. Respiratory function was assessed twice in 661 residents by spirometry and measurements of airway resistance. Nitric oxide (NO) in exhaled air was measured as a marker for airway inflammation. RESULTS: Air pollution concentrations were lower in 2010 than in 2008. The declines in pollutants varied among locations, with the largest decline observed in a street with a large reduction in traffic intensity. In regression analyses adjusted for important covariates, reductions in concentrations of soot, NO2, NOx, Cu, and Fe were associated with increases in forced vital capacity (FVC) (∼1% increase per interquartile range [IQR] decline). Airway resistance decreased with a decline in particulate matter (PM10) and PM2.5 (9% per IQR), although these associations were somewhat less consistent. No associations were found with exhaled NO. Results were driven largely by one street where traffic-related air pollution showed the largest reduction. Forced expiratory volume and FVC improved by 3% to 6% in residents of this street compared with suburban background residents. This was accompanied by a suggestive reduction in airway resistance. CONCLUSIONS: Reductions in air pollution may lead to small improvements in respiratory function.


Assuntos
Poluição do Ar/prevenção & controle , Política Pública , Doenças Respiratórias/fisiopatologia , Saúde da População Urbana/estatística & dados numéricos , Emissões de Veículos/prevenção & controle , Adolescente , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Feminino , Humanos , Masculino , Países Baixos , Óxido Nítrico/análise , Testes de Função Respiratória , Adulto Jovem
2.
Sci Total Environ ; 435-436: 132-40, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22846773

RESUMO

BACKGROUND: Evaluations of the effectiveness of air pollution policy interventions are scarce. This study investigated air pollution at street level before and after implementation of local traffic policies including low emission zones (LEZ) directed at heavy duty vehicles (trucks) in five Dutch cities. METHODS: Measurements of PM(10), PM(2.5), 'soot', NO(2), NO(x), and elemental composition of PM(10) and PM(2.5) were conducted simultaneously at eight streets, six urban background locations and four suburban background locations before (2008) and two years after implementation of the policies (2010). The four suburban locations were selected as control locations to account for generic air pollution trends and weather differences. RESULTS: All pollutant concentrations were lower in 2010 than in 2008. For traffic-related pollutants including 'soot' and NO(x) and elemental composition (Cr, Cu, Fe) the decrease did not differ significantly between the intervention locations and the suburban control locations. Only for PM(2.5) reductions were considerably larger at urban streets (30%) and urban background locations (27%) than at the matching suburban control locations (20%). In one urban street where traffic intensity was reduced with 50%, 'soot', NO(x) and NO(2) concentrations were reduced substantially more (41, 36 and 25%) than at the corresponding suburban control location (22, 14 and 7%). CONCLUSION: With the exception of one urban street where traffic flows were drastically reduced, the local traffic policies including LEZ were too modest to produce significant decreases in traffic-related air pollution concentrations.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Emissões de Veículos/análise , Cidades , Exposição Ambiental , Veículos Automotores/estatística & dados numéricos , Países Baixos , Óxidos de Nitrogênio/análise , Fuligem/análise
3.
Environ Health Perspect ; 120(2): 185-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22015682

RESUMO

BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative potential of PM collected at major urban streets and background locations, the associaton of oxidative potential with other PM characteristics, and the oxidative potential in different PM size fractions. METHODS: Measurements of PM with aerodynamic diameter ≤ 10 µm (PM10), PM with aerodynamic diameter ≤ 2.5 µm (PM2.5), soot, elemental composition, and oxidative potential of PM were conducted simultaneously in samples from 8 major streets and 10 urban and suburban background locations in the Netherlands. Six 1-week measurements were performed at each location over a 6-month period in 2008. Oxidative potential was measured as the ability to generate hydroxyl radicals in the presence of hydrogen peroxide in all PM10 samples and a subset of PM2.5 samples. RESULTS: The PM10 oxidative potential of samples from major streets was 3.6 times higher than at urban background locations, exceeding the contrast for PM mass, soot, and all measured chemical PM characteristics. The contrast between major streets and suburban background locations was even higher (factor of 6.5). Oxidative potential was highly correlated with soot, barium, chromium, copper, iron, and manganese. Oxidative potential of PM10 was 4.6 times higher than the oxidative potential of PM2.5 when expressed per volume unit and 3.1 times higher when expressed per mass unit. CONCLUSIONS: The oxidative potential of PM near major urban roads was highly elevated compared with urban and suburban background locations, and the contrast was greater than that for any other measured PM characteristic.


Assuntos
Poluentes Atmosféricos/química , Exposição Ambiental/análise , Material Particulado/química , Poluentes Atmosféricos/análise , Análise de Variância , Cidades , Espectroscopia de Ressonância de Spin Eletrônica , Monitoramento Ambiental , Humanos , Países Baixos , Oxirredução , Tamanho da Partícula , Material Particulado/análise , Características de Residência , Estações do Ano , Espectrometria por Raios X
4.
J Environ Monit ; 7(4): 302-10, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15798796

RESUMO

Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Conceitos Meteorológicos , Tamanho da Partícula , Poluentes Atmosféricos/química , Cidades , Exposição Ambiental , Europa (Continente) , Humanos , Umidade , Análise de Regressão , Estações do Ano , Temperatura , Saúde da População Urbana , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...