Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 254: 121396, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479172

RESUMO

Activated carbon adsorption is an effective method for removing perfluoroalkyl substances (PFAS) from water. However, the observation that higher concentrations of PFAS are observed after treatment than before (i.e., desorption) is an important, unsolved issue. In this study, to elucidate PFAS desorption and its relationship with PFAS properties, we conducted solvent extraction and long-term desorption experiments using granular activated carbon (GAC) that had been loaded with PFAS in two actual drinking water treatment plants. The amount of PFAS extracted from GAC depended on the depth in the GAC filter; longer-chain and hydrophobic PFAS were present in relatively higher amounts in the shallow part compared to the deep part of the GAC filter, whereas shorter-chain and hydrophilic PFAS were present in relatively higher amounts in the deep part compared to the shallow part. This pattern was probably due to a chromatographic effect by which hydrophilic PFAS adsorbed once, subsequently desorbed, and migrated from the shallow part of the GAC filter to the deeper part. The desorption potential of PFAS to water (i.e., the maximum amount of PFAS desorbed to water per unit mass of GAC) was estimated by conducting long-term bottle-point desorption tests and analyzing the relationship between the equilibrium water-phase concentration of PFAS in a bottle containing GAC and the amount of PFAS desorbed to water per unit GAC mass. The desorption ratio (ratio of desorption potential to loading) was the highest for PFAS for which the logarithm of the octanol/water distribution coefficient (Log DOW) ranged from -1 to 1. The implication was that most of those PFAS removed by GAC were likely to return to the water as the external water-phase concentrations dropped. The decrease of the desorption ratio to 20 % as Log DOW increased suggested irreversible adsorption due to hydrophobic affinity.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Água Potável/análise , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Purificação da Água/métodos , Adsorção
2.
Chemosphere ; 354: 141717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490617

RESUMO

Haloacetonitriles (HANs) are unregulated disinfection by-products that are more toxic than regulated species. Therefore, efficient decomposition of HAN precursors prior to disinfection is crucial for allaying the potential HAN-induced health risks. This study investigated the key roles of ultraviolet-activated persulfate (UV/PS) treatment in alleviating HAN formation. The effects of UV/PS treatment were evaluated by correlating with the characteristics of organic matter in surface water and comparing with conventional UV/H2O2 treatment. Upon irradiating raw water samples and a Suwannee River humic acid solution spiked with 10 mM PS or H2O2 with 254 nm UV light, UV/PS treatment was found to be more potent than UV/H2O2 in mitigating the HAN production and degrading organic substances; moreover, UV/PS treatment effectively decreased the dissolved organic nitrogen (DON) content. In contrast, UV/H2O2 treatment did not induce any noticeable reduction in DON level. Furthermore, both UV/PS and UV/H2O2 treatments reduced the dichloroacetonitrile (DCAN) formation potential (FP), leading to strong correlations with the degradation of aromatic and humic-acid-like compounds. Notably, UV/PS treatment efficiently decreased the FP of bromochloroacetonitrile (BCAN) and dramatically reduced that of dibromoacetonitrile (DBAN) after a sharp increase; however, UV/H2O2 treatment gradually increased the DBAN-FP. Bromide was activated by sulfate radicals during UV/PS treatment, negatively correlating with the BCAN-FP and DBAN-FP, indicating that the formation of reactive bromine species increased the DBAN-FP; however, excessive oxidation possibly led to the recovery of inorganic bromine for decreasing the BCAN-FP and DBAN-FP. Additionally, UV/PS treatment effectively suppressed toxicity owing to its high reduction rate for brominated HANs; in contrast, UV/H2O2 treatment resulted in less significant BCAN and DBAN reductions, leading to minimal net reduction in toxicity. Overall, UV/PS treatment was remarkably effective at diminishing the toxicity of brominated HANs, underscoring its potential to mitigate drinking-water-related health risks.


Assuntos
Acetonitrilas , Água Potável , Poluentes Químicos da Água , Purificação da Água , Raios Ultravioleta , Halogenação , Peróxido de Hidrogênio , Purificação da Água/métodos , Bromo , Desinfecção/métodos , Poluentes Químicos da Água/análise
3.
Water Res ; 245: 120559, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713795

RESUMO

Granular or powdered activated carbon (GAC/PAC) processes are installed in full-scale drinking water treatment plants (DWTPs) to reduce disinfection byproduct precursors, odor, ammonia, and pesticides. This study investigated the ability of GAC/PAC processes in 23 DWTPs to remove per- and polyfluoroalkyl substances (PFASs). In the GAC process, filter breakthrough of perfluoroalkyl carboxylic acids (PFCAs) occurred faster as the PFCA chain length is decreased. During periods of high water temperatures (20-29 °C), the effluent concentration of two short-chain PFCAs (C4 and C5) surpassed that of the influent after the throughput reached 5,000-7,500 bed volumes (equivalent to 2-3 months) due to desorption. However, such desorption was not observed during periods of low water temperatures (5-19 °C). Meanwhile, long-chain PFCAs were consistently removed, as the GAC was replaced before breakthrough became noticeable. PFAS removal deteriorated at a remarkably fast rate after a partial breakthrough of several tens of percent. Biological activated carbon was proved ineffective in removing PFASs due to its diminished adsorption capacity after long-term use. The PAC process, however, exhibited a slight decrease in PFCA residual (10%) at higher water temperatures (15-30 °C). The PAC dose required for a certain residual ratio was lower with an increase in the hydrophobicity of PFAS; C8-PFCA only required 20 mg/L of PAC for 50% removal, while C4-PFCA required a significantly higher dose of 100-700 mg/L. Consequently, the activated carbon process, which removes organic contaminants in surface water, was inadequate in removing PFASs, particularly those with short chains. Thus, it is recommended that GAC filters be replaced more frequently (within two months) for short-chain PFAS removal. Further, the adsorption performance of PAC must be enhanced.

4.
Sci Total Environ ; 879: 163000, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36963677

RESUMO

Raphidophytes are flagellate unicellular algae that causes algal blooms in drinking water sources. In Japan, it was recently reported that the concentration of trichloroacetic acid (TCAA), a major chlorinated disinfection byproduct (DBP), increased dramatically in drinking water when the source water contained raphidophytes. Additionally, raphidophytes produced haloacetic acid (HAA) precursors, especially TCAA precursors, in high concentrations. However, their properties are still unknown, and thus, well-designed countermeasures against DBP formation have not yet been established. Therefore, in this study, the HAA precursors originated from raphidophytes in natural water collected from the algal blooms in Muro Dam (Nara Prefecture, Japan) and Gonyostomum semen (G. semen), a raphidophyte species, cultivated in the laboratory, were characterized to provide the information for establishing suitable treatment strategies. Using several high-performance liquid chromatography columns, solid-phase extraction cartridges, and ultrafiltration devices, and the spectral profiles, we discovered that the HAA precursors are highly hydrophilic and high-molecular-weight compounds with acidic and phenolic functional groups. Further characterization of the high-molecular-weight fraction (> 3 kDa) from the G. semen culture showed that the HAA precursors had a molecular weight of ~10-60 kDa, and that they were not protein molecules despite containing a large amount of nitrogen atoms. Furthermore, the TCAAFP of the fraction (310 ± 25 µg/mg C) were as high as phenol, known as a reactive TCAA model precursor. The presence of unique and unreported DBP precursors was confirmed.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Halogenação , Desinfetantes/análise , Água Potável/química , Ácido Tricloroacético/análise , Peso Molecular , Desinfecção/métodos , Água Doce/análise , Fenóis/análise , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 56(4): 2345-2354, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119842

RESUMO

This study investigated the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) fragmentation of 10 potent model ozone (O3)-reactive N-nitrosodimethylamine (NDMA) precursors bearing (CH3)2N-N or (CH3)2N-(SO2)-N. Fragments (m/z 61.0766, 60.0688 Da loss, and 72.0688 Da loss) were discovered as pertinent diagnostic fragments for precursors bearing (CH3)2N-N, whereas a loss of 108.0119 Da was consistent for precursors bearing (CH3)2N-S(O2)-N. Using the fragments as structural hints on a sewage fraction with a high concentration of O3-reactive precursors, peaks of precursors sharing m/z 61.0766, a 60.0688 Da loss, or both were flagged. Then, using in silico fragmenters and (CH3)2N-N as a substructure filter on online-chemical structure databases, we identified PubChem's compound identifier (PCCID) 141210417 and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide (TMDS). TMDS was confirmed using an authentic standard, and ion mobility (IM)-QTOF/MS confirmed its rider peak as PCCID 141210417. PCCID 141210417 is an isomer of TMDS, and its environmental occurrence is associated with technical-grade TMDS and industrial effluents. The estimated contribution of TMDS to the total NDMA formation potential of the sewage fraction was 20-24%, which was suggestive of the significance of PCCID 141210417 and other precursors.


Assuntos
Dimetilnitrosamina , Ozônio , Cromatografia Líquida , Dimetilnitrosamina/química , Espectrometria de Massas , Ozônio/química , Esgotos/química
6.
Water Res ; 184: 116201, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726736

RESUMO

The accumulation of manganese in drinking water distribution systems often causes problems of "black water" in customers' taps. In this study, Mn accumulation onto a pipe surface under chlorinated conditions was investigated by focusing on the different states of Mn in the water. Lab-scale experiments suggested that the accumulation process included both the attachment of particulate Mn onto the surface (i.e., physical pathway) and the autocatalytic oxidation of Mn ions on the surface (i.e., chemical pathway). Based on the experimental results, a numerical model of Mn accumulation on the pipe surface via the two pathways was established. According to the model predictions, the physical pathway contributed less than the chemical pathway over time since the latter accelerated as Mn accumulation increased. The chemical pathway contributed 94% when the concentration of total Mn was 10 µg/L throughout the experiment, but only 67% when the concentration was 100 µg/L. Thus, the chemical pathway was more important for low concentrations of total Mn. In addition, the type of pipe materials used only influenced the physical pathway, while the presence of bromide directly enhanced the chemical pathway. In conclusion, limiting the chemical pathway was suggested as an effective strategy for reducing Mn accumulation during long-term operation, which is achieved by controlling the state of Mn in finished water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Manganês/análise , Minerais , Oxirredução , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 367: 620-628, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30654279

RESUMO

Pollutant release and transfer registers (PRTRs) compounds accidentally released to source waters can be important precursors of the carcinogenic N-nitrosodimethylamine (NDMA) during drinking water treatment. The NDMA formation potentials (NDMAFPs) of 31 anthropogenic nitrogenous compounds with dimethylamine (DMA) moiety on the Japanese PRTR and the registered precursors listed by the Ministry of Health, Labour and Welfare of Japan are investigated as well as influencing factors (i.e., NH2Cl dose and water matrices) on the NDMAFPs of precursors. Tertiary amines with aryl groups ß-positioned to the nitrogen atom of the DMA moiety formed high concentrations of NDMA (35-51%) during chloramination. Moreover, dimethylcarbamoyl chloride (DMCCl) was considered a new NDMA precursor with NDMAFP of 1.1%, higher than DMA, a traditional NDMA precursor. Excessive NH2Cl dose enhanced the NDMA formation, and the NDMAFP of DMCCl significantly decreased in river water; the effect of the matrix in river water varied and was compound-specific. Among the selected nitrogenous compounds, NDMAFPs of 15 excessed the current guideline concentration for NDMA in Japan (100 ng/L) assuming an accidental release of 0.144 mg C/L (the concentration in previous Japanese water quality accident in May 2012), and 2-(dimethylaminomethyl) thiophene (DMAMT) showed the highest NDMAFP at 58 µg/L.

8.
Chemosphere ; 198: 68-74, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29421762

RESUMO

Haloacetamides (HAcAms) are nitrogenous disinfection byproducts in drinking water. The profiles of six HAcAms and their formation potentials (FPs) upon chlorination at water purification plant 1 (WPP-1) in September 2016 and at WPP-2 in September 2016 and January 2017 were investigated. HAcAms were removed effectively when they were formed via intermediate chlorination during water purification processes. Removal of total HAcAm-FPs ranged from 50% to 75%. Coagulation/flocculation/sand filtration showed the highest removal of total HAcAm-FPs. As for individual HAcAms, while chlorinated acetamide-FPs were removed, brominated acetamide-FPs, particularly 2,2-dibromoacetamide, remained. The bromine incorporation factors increased during all water purification processes except ozonation and the ozone/hydrogen peroxide process for diHAcAms (2,2-dichloroacetamide, 2-bromo-2-chloroacetamide, and 2,2-dibromoacetamide). The trends in relationships between DOM indices (fractions of dissolved organic matter, ultraviolet absorbance at 260 nm, and fluorescence intensities representing humic-like and tryptophan-like compounds) and total HAcAm-FPs during ozonation and ozone/hydrogen peroxide process were different from those during other processes.


Assuntos
Acetamidas/isolamento & purificação , Carvão Vegetal/química , Floculação , Ozônio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Carvão Vegetal/farmacologia , Desinfecção/métodos , Filtração , Halogenação , Peróxido de Hidrogênio
9.
Water Res ; 110: 48-55, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27984805

RESUMO

Halobenzoquinones are a group of disinfection byproducts formed by chlorination of certain substances in water. However, to date, the identities of halobenzoquinone precursors remain unknown. In this study, the formation of 2,6-dichloro-1,4-benzoquinone (DCBQ), a typical halobenzoquinone, from 31 aromatic compounds was investigated after 60 min of chlorination. DCBQ was formed from 21 compounds at molar formation yields ranging from 0.0008% to 4.9%. Phenol and chlorinated phenols served as DCBQ precursors, as reported previously. Notably, DCBQ was also formed from para-substituted phenolic compounds. Compounds with alkyl and carboxyl groups as para-substituents led to relatively higher molar formation yields of DCBQ. Moreover, p-quinone-4-chloroimide, 2,6-dichloroquinone-4-chloroimide (2,6-DCQC), and para-substituted aromatic amines (e.g., aniline and N-methyl aniline) served as DCBQ precursors upon chlorination. It was deduced that DCBQ was formed from the para-substituted aromatic amines via 3,5-dichloroquinone-4-chloroimide, a structural isomer of 2,6-DCQC. These results suggested that DCBQ was formed by chlorination of natural organic matter containing para-substituted phenolic species and para-substituted aromatic amines, despite the absence of phenol in water.


Assuntos
Benzoquinonas/química , Halogenação , Desinfecção , Fenóis/química , Purificação da Água
10.
Water Res ; 106: 470-476, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770723

RESUMO

The occurrence of six haloacetamides (HAcAms), which are a group of emerging nitrogenous disinfection byproducts, was investigated in drinking water across Japan in September 2015 and February 2016. At least one of the six HAcAms were found in all of the drinking water samples and their total concentrations ranged from 0.3 to 3.8 µg/L. The detection frequencies and concentrations of 2,2-dichloroacetamide (DCAcAm) and 2-bromo-2-chloroacetamide (BCAcAm) were the largest among the targeted HAcAm species. The total HAcAm concentrations in the raw water after chlorination ranged from 0.8 to 11 µg/L. The bromine incorporation factors (BIFs) of the targeted dihalogenated HAcAms (di-HAcAms) (DCAcAm, BCAcAm, and 2,2-dibromoacetamide) in the drinking water samples correlated well with those in the raw water after chlorination. The total HAcAm concentrations and the BIF of the di-HAcAms in the raw water after chlorination correlated with trihalomethane concentrations. HAcAm concentrations after chlorination increased with chlorination time. While the formation of di-HAcAms after chlorination was higher at higher pH, that of 2,2,2-trichloroacetamide remained unaffected by pH.


Assuntos
Halogenação , Purificação da Água , Desinfecção , Água Potável , Japão , Poluentes Químicos da Água
11.
Sci Rep ; 6: 34188, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659197

RESUMO

The molecular mechanisms underlying mesodermal and cardiac specification from embryonic stem cells (ESCs) are not fully understood. Here, we showed that the BTB domain-containing zinc finger protein CIBZ is expressed in mouse ESCs but is dramatically downregulated during ESC differentiation. CIBZ deletion in ESCs induced specification toward mesoderm phenotypes and their differentiation into cardiomyocytes, whereas overexpression of CIBZ delayed these processes. During ESC differentiation, CIBZ loss-and-gain-of-function data indicate that CIBZ negatively regulates the expressions of Brachyury (T) and Mesp1, the key transcriptional factors responsible for the specification of mammalian mesoderm and cardiac progenitors, respectively. Chromatin immunoprecipitation assays showed that CIBZ binds to T and Mesp1 promoters in undifferentiated ESCs, and luciferase assays indicate that CIBZ suppresses T and Mesp1 promoters. These findings demonstrate that CIBZ is a novel regulator of mesodermal and cardiac differentiation of ESCs, and suggest that CIBZ-mediated cardiac differentiation depends on the regulation of these two genes.

12.
Water Res ; 88: 661-670, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26575475

RESUMO

Due to decreasing water demands in Japan, hydraulic retention times of water in piped supply systems has been extended, resulting in a longer contact time with disinfectants. However, the effects of extended contact time on the formation of various disinfection byproducts (DBPs), including carbonaceous DBPs such as trihalomethane (THM) and haloacetic acid (HAA), and nitrogenous DBPs such as nitrosodimethylamine (NDMA) and nitrosomorpholine (NMor), have not yet been investigated in detail. Herein, we compared the formation of these DBPs by chlorination and chloramination for five water samples collected from rivers and a dam in Japan, all of which represent municipal water supply sources. Water samples were treated by either filtration or a combination of coagulation and filtration. Treated samples were subjected to a DBP formation potential test by either chlorine or chloramine for contact times of 1 day or 4 days. Four THM species, nine HAA species, NDMA, and NMor were measured by GC-ECD or UPLC-MS/MS. Lifetime cancer risk was calculated based on the Integrated Risk Information System unit risk information. The experiment and analysis focused on (i) prolonged contact time from 1 day to 4 days, (ii) reduction efficiency by conventional treatment, (iii) correlations between DBP formation potentials and water quality parameters, and (iv) the contribution of each species to total risk. With an increased contact time from 1 day to 4 days, THM formation increased to 420% by chloramination. Coagulation-filtration treatment showed that brominated species in THMs are less likely to be reduced. With the highest unit risk among THM species, dibromochloromethane (DBCM) showed a high correlation with bromine, but not with organic matter parameters. NDMA contributed to lifetime cancer risk. The THM formation pathway should be revisited in terms of chloramination and bromine incorporation. It is also recommended to investigate nitrosamine formation potential by chloramination.


Assuntos
Cloraminas/química , Cloro/química , Desinfetantes/química , Água Potável/análise , Poluentes Químicos da Água/análise , Aminação , Monitoramento Ambiental , Glicolatos/análise , Halogenação , Substâncias Húmicas/análise , Japão , Lagos/análise , Nitrosaminas/análise , Rios , Fatores de Tempo , Trialometanos/análise , Purificação da Água
13.
Anal Sci ; 31(8): 769-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26256599

RESUMO

1,1,5,5-Tetramethylcarbohydrazide (TMCH) is the main precursor of N-nitrosodimethylamine upon ozonation in the Yodo River basin, Japan. This study was performed to develop an analytical method for TMCH using solid-phase extraction with ultra-high performance liquid chromatography-tandem mass spectrometry. TMCH is hydrophilic and a tertiary amine derivative, so Oasis(®) MCX cartridges were used as solid-phase cartridges. The recoveries of TMCH in tap and river waters as well as secondary effluent from a sewage treatment plant ranged from 75 to 94%. The limit of quantification of TMCH was 4 ng L(-1). The source of TMCH in the Yodo River basin was found to be effluent from one sewage treatment plant. The concentrations were < 4 ng L(-1) in raw water from water purification plants in regions other than the Yodo River basin, indicating that TMCH was used specifically in the basin.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dimetilnitrosamina/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Água/química , Dimetilnitrosamina/química , Dimetilnitrosamina/isolamento & purificação , Limite de Detecção , Rios/química , Esgotos/química , Extração em Fase Sólida , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
14.
Environ Sci Technol ; 48(19): 11243-50, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25184404

RESUMO

N-Nitrosodimethylamine (NDMA), a potential human carcinogen, is known to be a disinfection byproduct of chloramination and ozonation. NDMA is formed during ozonation at water purification plants in the Yodo River basin, a major drinking water source in western Japan. An NDMA precursor, 1,1,5,5-tetramethylcarbohydrazide (TMCH) was identified in sewage containing industrial effluents via ultrahigh performance liquid chromatography-tandem mass spectrometry, and ultrahigh performance liquid chromatography-time-of-flight mass spectrometry, as well as nuclear magnetic resonance spectroscopy. The mean of the NDMA molar formation yield of TMCH upon ozonation in four water matrices was 140%. TMCH removal was low during biological treatment processes at a sewage treatment plant. The mean TMCH contribution to total NDMA precursors upon ozonation of the primary, secondary, and final effluents of the sewage treatment plant in January and February of 2014 was 43-72%, 51-72%, and 42-60%, respectively, while the contributions of 4,4'-hexamethylenebis(1,1-dimethylsemicarbazide) and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide, two other known NDMA precursors, were limited to 0.6% and 6.9%, respectively. Thus, TMCH was identified as the primary precursor yielding NDMA upon ozonation in the Yodo River basin.


Assuntos
Dimetilnitrosamina/química , Hidrazinas/análise , Resíduos Industriais/análise , Esgotos/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , Desinfecção/métodos , Hidrazinas/química , Japão , Ozônio/química , Rios/química , Esgotos/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/química , Purificação da Água/métodos
15.
Sci Total Environ ; 488-489: 325-32, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24836388

RESUMO

In May 2012, formaldehyde (FA) precursor contamination in the Tone River Basin led to the suspension of water supply to approximately 360,000 homes, which affected approximately 870,000 people in the Tokyo Metropolitan Area. The discharge of industrial effluents containing hexamethylenetetramine (HMT), a tertiary amine and FA precursor, without proper treatment resulted in the formation of FA during chlorination at water purification plants. Tertiary amines are known to be the precursors of aldehydes upon chlorination. In this study, FA formation from 29 separate amine derivatives during chlorination was investigated to determine any other potential causes of this water quality accident. The FA formation yield also included FA formation by the autolysis of the target compounds as well as the chlorination of the autolysis products. The FA molar formation yield of HMT was the highest after 24h of chlorination (440%). Among the various tertiary amine derivatives containing N-methyl groups, tertiary amines and hydrazines were found to be strong FA precursors because the FA molar formation yields per N-methyl group ranged from 25% to 45% (with a mean of 38%) and from 35% to 45% (with a mean of 41%), respectively. Guanidines and sulfamides containing N-methyl groups were also FA precursors but they exhibited lower FA molar formation yields per N-methyl group. The FA molar formation yields of the remaining compounds were <4%. The FA formation yield of HMT was extremely high even on a per weight basis (95 wt.%). The FA weight formation yields of some tertiary amines and hydrazines were greater than 20 wt.%.


Assuntos
Poluentes Atmosféricos/química , Aminas/química , Cloraminas/química , Formaldeído/química , Modelos Químicos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Poluentes Atmosféricos/análise , Aminas/análise , Cloraminas/análise , Formaldeído/análise , Poluentes Químicos da Água/análise
16.
Nihon Koshu Eisei Zasshi ; 60(9): 579-85, 2013 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-24125817

RESUMO

OBJECTIVES: The current situation and problems associated with inactivation of microorganisms in water using copper were elucidated. METHODS: A literature review was conducted regarding the history and mechanisms of inactivation technology using copper, the variety of microorganisms shown to be inactivated by these methods in previous experiments, and the efficacy of such technologies for the inactivation of microorganisms in water. RESULTS: The use of copper for inactivation of microorganisms has a long history. Although the use of copper was discontinued temporarily owing to the advent of antibiotics in the 1930s, the occurrence of antibiotic-resistant bacteria has resulted in the need for different approaches to control pathogenic microorganisms. One such alternative is the use of copper. Although the mechanisms underlying the efficacy of copper inactivation technology have not yet been elucidated in detail, it has been suggested that pathogenic bacteria are inactivated due to the toxicity of copper ions and strong oxidation effects of reactive oxygen species. Copper inactivation technology is effective against many pathogenic microorganisms that pose a risk to public health, such as Legionella pneumophila, Salmonella enterica, and Mycobacterium tuberculosis. In recent years, copper inactivation technology has been used in various water-related devices, especially water supply pipes in buildings. Previous studies have demonstrated that microorganisms can be sufficiently inactivated by copper even at concentrations below that specified in the Water Quality Standard for Drinking Water. However, some previous studies have indicated that the inactivation effect of copper is short-lived. Therefore, the development of techniques to maintain a long-term inactivation effect is a key concern. In addition, it has been reported that the use of copper pipes triggers chlorine decay and results in the formation of chlorine disinfection byproducts. Hence, further studies should aim at assessing the risks and benefits associated with the use of copper. CONCLUSION: Although the practical issues regarding copper inactivation technology are persistent, this method has been demonstrated to be efficacious. Therefore, this technology could be expected to be used in many devices such as water supply systems in hospitals in the near future.


Assuntos
Cobre/farmacologia , Microbiologia da Água , Desinfecção/métodos , Abastecimento de Água
17.
Sci Total Environ ; 463-464: 199-208, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23807022

RESUMO

The contributions of water to total levels of chlorate and perchlorate intake were determined using food and water samples from a market basket study from 10 locations in Japan between 2008 and 2009. Foods were categorized into 13 groups and analyzed along with tap water. The average total chlorate intake was 333 (min. 193-max. 486) µg/day for samples cooked with tap water. The contribution of tap water to total chlorate intake was as high as 47%-58%, although total chlorate intake was less than 32% of the tolerable daily intake, 1500 µg/day for body weight of 50 kg. For perchlorate, daily intake from water was 0.7 (0.1-4.4) µg/day, which is not high compared to the average total intake of 14 (2.5-84) µg/day, while the reference dose (RfD) is 35 µg/day and the provisional maximum tolerable daily intake (PMTDI) is 500 µg/day for body weight of 50 kg. The highest intake of perchlorate was 84 µg/day, where concentrations in foods were high, but not in water. The contribution of water to total perchlorate intake ranged from 0.5% to 22%, while the ratio of highest daily intake to RfD was 240% and that to PMTDI was 17%. Eight baby formulas were also tested--total chlorate and perchlorate intakes were 147 (42-332) µg/day and 1.11 (0.05-4.5) µg/day, respectively, for an ingestion volume of 1 L/day if prepared with tap water.


Assuntos
Cloratos/análise , Água Potável/química , Percloratos/análise , Poluentes Químicos da Água/análise , Análise de Alimentos , Humanos , Lactente , Fórmulas Infantis/química , Concentração Máxima Permitida , Oryza/química , Poluentes Químicos da Água/efeitos adversos
18.
Chemosphere ; 89(6): 702-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22795068

RESUMO

N-Nitrosodimethylamine (NDMA) is a potent carcinogen that yields a cancer risk of 10(-6) at concentrations as low as 0.7 ng L(-1). Tentative guideline values are set at 3 ng L(-1) in California, USA; 9 ng L(-1) in Ontario, Canada; 40 ng L(-1) nationwide in Canada; and 100 ng L(-1) by the World Health Organization. NDMA is a great concern in treating reclaimed water as well as drinking water. UV degradation can be considered effective degradation method. A 1-log reduction of NDMA is achieved by 1000 mJ cm(-2) of a 254-nm low pressure (LP) mercury UV lamp. However, a higher degradation efficiency than that provided by LP lamps is desired in practical treatment. In this study, the effects of wavelength and water quality were investigated to achieve higher degradation efficiency. The effects of wavelength were examined by comparing three UV lamps: a 222-nm Kr Cl Excimer UV lamp, a 254-nm LP mercury UV lamp, and a 230- to 270-nm filtered medium pressure (FMP) mercury UV lamp. The 222-nm lamp and FMP lamp achieved 4 times and 2.8 times higher degradation efficiency, respectively, than the conventional 254-nm LP lamp. Effects on water quality were also simulated by using absorption spectrum data of nitrate solutions and process water from a drinking-water treatment plant. In the simulation, the 222-nm lamp was affected by UV-absorbing compounds in the water, whereas the FMP lamp showed more stable degradation efficiency. Appropriate use of these three types of lamps could enhance the efficiency of degradation of NDMA.


Assuntos
Dimetilnitrosamina/química , Fotólise , Raios Ultravioleta , Poluentes Químicos da Água/química , Absorção , Nitratos/química , Oxirredução , Purificação da Água , Qualidade da Água
19.
Water Res ; 46(14): 4397-404, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22717151

RESUMO

The presence of radionuclides at five water purification plants was investigated after an explosion at a nuclear power plant hit by the Great East Japan Earthquake on 11 March 2011. Radioactive iodine (¹³¹I) and cesium (¹³4Cs and ¹³7Cs) were detected in raw water in Fukushima and neighboring prefectures. ¹³¹I was not removed by coagulation-flocculation-sedimentation. ¹³¹I was removed by granular activated carbon (GAC) and powdered activated carbon (PAC) at a level of about 30%-40%, although ¹³¹I was not removed in some cases. This was also confirmed by laboratory-scale experiments using PAC. The removal percentages of ¹³¹I in river and pond waters by 25 mg dry/L of PAC increased from 36% to 59% and from 41% to 48%, respectively, with chlorine dosing before PAC. ¹³4Cs and ¹³7Cs were effectively removed by coagulation at both a water purification plant and in laboratory-scale experiments when turbidity was relatively high. In contrast, ¹³4Cs and ¹³7Cs in pond water with low turbidity were not removed by coagulation. This was because ¹³4Cs and ¹³7Cs in river water were present mainly in particulate form, while in pond water they were present mainly as cesium ions (¹³4Cs+ and ¹³7Cs+). However, the removal of ¹³4Cs and ¹³7Cs in pond water by coagulation increased markedly when ¹³4Cs and ¹³7Cs were mixed with sediment 24 h before coagulation.


Assuntos
Terremotos , Explosões , Centrais Nucleares , Liberação Nociva de Radioativos , Poluentes Radioativos da Água/isolamento & purificação , Purificação da Água/métodos , Radioisótopos de Césio , Carvão Vegetal/química , Água Potável/química , Filtração , Floculação , Radioisótopos do Iodo , Japão , Esgotos/química , Dióxido de Silício/química
20.
Anal Sci ; 27(11): 1091-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22076335

RESUMO

An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were <0.2-2.3 µg/L. The results of the present study indicated that the proposed method was suitable for determining bromate concentrations in drinking water without sample pretreatment.


Assuntos
Bromatos/análise , Cromatografia Líquida/métodos , Água Potável/análise , Espectrometria de Massas em Tandem/métodos , Abastecimento de Água/análise , Cromatografia Líquida/instrumentação , Água Potável/química , Espectrometria de Massas em Tandem/instrumentação , Fatores de Tempo , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...