Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 551: 55-68, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788828

RESUMO

Gamma-aminobutyric acid and glycine (GABA/Gly) are predominantly inhibitory neurotransmitters in the mature central nervous system; however, they mediate membrane potential depolarization during development. These differences in actions depend on intracellular Cl- concentrations ([Cl-]i), which are primarily regulated by potassium chloride cotransporter 2 (KCC2). After nerve injury, KCC2 expression markedly decreases and GABA/Gly mediate depolarization. Following nerve regeneration, KCC2 expression recovers and GABA/Gly become inhibitory, suggesting that KCC2 reduction and GABA/Gly excitation may be crucial for axonal regeneration. To directly clarify their involvement in regeneration, we analyzed recovery processes after tibial nerve severance and suturing between heterozygous KCC2 knockout mice (HT), whose KCC2 levels are halved, and their wild-type littermates (WT). Compared with WT mice, the sciatic functional index-indicating lower limb motor function-was significantly higher until 28 days after operation (D28) in HT mice. Furthermore, at D7, many neurofilament-positive fibers were elongated into the distal part of the sutured nerve in HT mice only, and myelinated axonal density was significantly higher at D21 and D28 in HT animals. Electron microscopy and galanin immunohistochemistry indicated a shorter nerve degeneration period in HT mice. Moreover, a less severe decrease in choline acetyltransferase was observed in HT mice. These results suggest that nerve degeneration and regeneration proceed more rapidly in HT mice, resulting in milder motor dysfunction. Via similar microglial activation, nerve surgery may reduce KCC2 levels more rapidly in HT mice, followed by earlier increased [Cl-]i and longer-lasting GABA/Gly excitation. Taken together, reduced KCC2 may accelerate nerve regeneration via GABA/Gly excitation.


Assuntos
Axônios , Cotransportadores de K e Cl- , Camundongos Knockout , Regeneração Nervosa , Simportadores , Nervo Tibial , Animais , Simportadores/metabolismo , Simportadores/genética , Regeneração Nervosa/fisiologia , Nervo Tibial/lesões , Nervo Tibial/metabolismo , Axônios/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/metabolismo , Modelos Animais de Doenças
2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055019

RESUMO

Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play critical roles in regulating pain, locomotive movement, and respiratory rhythms. In this study, we first describe GABAergic and glycinergic transmission and inhibitory networks, consisting of three types of terminals in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with a specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated, and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many GABAergic neurons convert to a coreleasing state. The coreleasing neurons and terminals remain in the dorsal horn, whereas many ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.


Assuntos
Neurônios GABAérgicos/metabolismo , Glicina/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo , Animais , Células do Corno Anterior/metabolismo , Astrócitos/metabolismo , Axônios/metabolismo , Biomarcadores , Gânglios Espinais/metabolismo , Camundongos , Medula Espinal/citologia , Sinapses/metabolismo
3.
Neurosci Res ; 177: 52-63, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34757085

RESUMO

Peripheral nerve injury affects motor functions. To reveal the mechanisms underlying motor dysfunction and recovery after nerve compression, which have not been precisely examined, we investigated the temporal relationship among changes in motor function, nerve histopathology, and marker molecule expression in the spinal cord after loose ligation of the mouse sciatic nerve. After ligation, sciatic motor function suddenly declined, and axons gradually degenerated. During degeneration, galanin was localized in motor neuron cell bodies. Then, in the ventral horn, microglia were activated, and expression of choline acetyltransferase (ChAT), a synthetic enzyme of acetylcholine, and potassium chloride co-transporter 2 (KCC2), which shifts the action of γ-amino butyric acid (GABA) and glycine to inhibitory, decreased. Motor function recovery was insufficient although axonal regeneration was complete. ChAT levels gradually recovered during axonal regeneration. When regeneration was nearly complete, microglial activation declined, and KCC2 expression started to increase. The KCC2 level sufficiently recovered when axonal regeneration was complete, suggesting that the excitatory action of GABA/glycine may participate in axonal regeneration. Furthermore, these changes proceeded slower than those after severance, suggesting that loose ligation, compression, may mediate slower progression of degeneration and regeneration than severance, and these changes may cause the motor dysfunction and its recovery.


Assuntos
Traumatismos dos Nervos Periféricos , Simportadores , Animais , Colina O-Acetiltransferase/metabolismo , Glicina/metabolismo , Camundongos , Microglia/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo , Corno Ventral da Medula Espinal/metabolismo , Corno Ventral da Medula Espinal/patologia , Simportadores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
4.
Brain Res ; 1733: 146718, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045595

RESUMO

Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.


Assuntos
Microglia/metabolismo , Neuralgia/metabolismo , Simportadores/metabolismo , Nervo Tibial/lesões , Nervo Tibial/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/patologia , Limiar da Dor , Nervo Tibial/patologia , Cotransportadores de K e Cl-
5.
Neuroscience ; 343: 459-471, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28039040

RESUMO

In the spinal cord, glycine and γ-amino butyric acid (GABA) are inhibitory neurotransmitters. However, the ontogeny of the glycinergic network remains unclear. To address this point, we examined the developmental formation of glycinergic terminals by immunohistochemistry for glycine transporter 2 (GlyT2), a marker of glycinergic terminals, in developing mouse cervical spinal cord. Furthermore, the developmental localization of GlyT2 was compared with that of glutamic acid decarboxylase (GAD), a marker of GABAergic terminals, and vesicular GABA transporter (VGAT), a marker of inhibitory terminals, by single and double immunolabeling. GlyT2-positive dots (glycinergic terminals) were first detected in the marginal zone on embryonic day 14 (E14). In the ventral horn, they were detected at E16 and increased in observed density during postnatal development. Until postnatal day 7 (P7), GAD-positive dots (GABAergic terminals) were dominant and GlyT2 immunolabeling was localized at GAD-positive dots. During the second postnatal week, GABAergic terminals markedly decreased and glycinergic terminals became dominant. In the dorsal horn, glycinergic terminals were detected at P0 in lamina IV and P7 in lamina III and developmentally increased. GlyT2 was also localized at GAD-positive dots, and colocalizing dots were dominant at P21. VGAT-positive dots (inhibitory terminals) continued to increase until P21. These results suggest that GABAergic terminals first appear during embryonic development and may often change to colocalizing terminals throughout the gray matter during development. The colocalizing terminals may remain in the dorsal horn, whereas in the ventral horn, colocalizing terminals may give rise to glycinergic terminals.


Assuntos
Células do Corno Anterior/metabolismo , Medula Cervical/crescimento & desenvolvimento , Medula Cervical/metabolismo , Glicina/metabolismo , Células do Corno Posterior/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Células do Corno Anterior/citologia , Medula Cervical/citologia , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Células do Corno Posterior/citologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Brain Res ; 1486: 39-52, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23044470

RESUMO

In the adult brain, γ-amino butyric acid (GABA) is an inhibitory neurotransmitter, whereas it acts as an excitatory transmitter in the immature brain, and may be involved in morphogenesis. In the present study, we immunohistochemically examined the developmental changes in GABA signaling in the embryonic mouse cervical spinal cord. Glutamic acid decarboxylase and GABA were markers for GABA neurons. Vesicular GABA transporter was a marker for GABAergic and glycinergic terminals. Potassium chloride cotransporter 2 was a marker for GABAergic inhibition. We found five points: (1) In the ventral part, GABA neurons were divided into three groups. The first differentiated group sent commissural axons after embryonic day 11 (E11), but disappeared or changed their transmitter by E15. The second and third differentiated groups were localized in the ventral horn after E12, and sent axons to the ipsilateral marginal zone. There was a distal-to-proximal gradient in varicosity formation in GABAergic axons and a superficial-to-deep gradient in GABAergic synapse formation in the ventral horn; (2) In the dorsal horn, GABA neurons were localized after E13, and synapses were diffusely formed after E15; (3) GABA may be excitatory for several days before synapses formation; (4) There was a ventral-to-dorsal gradient in the development of GABA signaling. The GABAergic inhibitory network may develop in the ventral horn between E15 and E17, and GABA may transiently play crucial roles in inhibitory regulation of the motor system in the mouse fetus; (5) GABA signaling continued to develop after birth, and GABAergic system diminished in the ventral horn.


Assuntos
Células do Corno Anterior/embriologia , Células do Corno Anterior/fisiologia , Neurônios GABAérgicos/fisiologia , Células do Corno Posterior/embriologia , Células do Corno Posterior/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Células do Corno Anterior/citologia , Desenvolvimento Embrionário/fisiologia , Feminino , Neurônios GABAérgicos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Células do Corno Posterior/citologia , Gravidez , Medula Espinal/citologia , Medula Espinal/embriologia , Medula Espinal/fisiologia , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...