Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 138(2): 97-104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762340

RESUMO

The creation of a self-replicating synthetic cell is an essential to understand life self-replication. One method to create self-replicating artificial cells is to reconstitute the self-replication system of living organisms in vitro. In a living cell, self-replication is achieved via a system called the autonomous central dogma, a system in which central dogma-related factors are autonomously synthesized and genome replication, transcription, and translation are driven by nascent factors. Various studies to reconstitute some processes of the autonomous central dogma in vitro have been conducted. However, in vitro reconstitution of the entire autonomous central dogma system is difficult as it requires balanced expression of several related genes. Therefore, we developed a method to simultaneously quantify and optimize the in vitro expression balance of multiple genes. First, we developed a quantitative mass spectrometry method targeting genome replication-related proteins as a model of central dogma-related factors and acquired in vitro expression profiles of these genes. Additionally, we demonstrated that the in vitro expression balance of these genes can be easily optimized by adjusting the input gene ratio based on the data obtained by the developed method. This study facilitated the easy optimization of the in vitro expression balance of multiple genes. Therefore, extending the scope of this method to other central dogma-related factors will accelerate attempts of self-replicating synthetic cells creation.


Assuntos
Células Artificiais , Células Artificiais/metabolismo , Replicação do DNA , Espectrometria de Massas , Biologia Sintética/métodos , Transcrição Gênica
2.
Sci Rep ; 12(1): 4182, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264690

RESUMO

Since nitrogenase is irreversibly inactivated within a few minutes after exposure to oxygen, current studies on the heterologous expression of nitrogenase are limited to anaerobic conditions. This study comprehensively identified genes showing oxygen-concentration-dependent expression only under nitrogen-fixing conditions in Azotobacter vinelandii, an aerobic diazotroph. Among the identified genes, nafU, with an unknown function, was greatly upregulated under aerobic nitrogen-fixing conditions. Through replacement and overexpressing experiments, we suggested that nafU is involved in the maintenance of nitrogenase activity under aerobic nitrogenase activity. Furthermore, heterologous expression of nafU in nitrogenase-producing Escherichia coli increased nitrogenase activity under aerobic conditions by 9.7 times. Further analysis of NafU protein strongly suggested its localization in the inner membrane and raised the possibility that this protein may lower the oxygen concentration inside the cells. These findings provide new insights into the mechanisms for maintaining stable nitrogenase activity under aerobic conditions in A. vinelandii and provide a platform to advance the use of nitrogenase under aerobic conditions.


Assuntos
Azotobacter vinelandii , Azotobacter , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Oxigênio/metabolismo
3.
PLoS One ; 15(12): e0236850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315868

RESUMO

Ribosomes are the sophisticated machinery that is responsible for protein synthesis in a cell. Recently, quantitative mass spectrometry (qMS) have been successfully applied for understanding the dynamics of protein complexes. Here, we developed a highly specific and reproducible method to quantify all ribosomal proteins (r-proteins) by combining selected reaction monitoring (SRM) and isotope labeling. We optimized the SRM methods using purified ribosomes and Escherichia coli lysates and verified this approach as detecting 41 of the 54 r-proteins separately synthesized in E. coli S30 extracts. The SRM methods will enable us to utilize qMS as a highly specific analytical tool in the research of E. coli ribosomes, and this methodology have potential to accelerate the understanding of ribosome biogenesis, function, and the development of engineered ribosomes with additional functions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Biossíntese de Proteínas/fisiologia , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...