Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(5): 943-951, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377894

RESUMO

Interferons (IFNs) are cytokines with potent antineoplastic and antiviral properties. IFNα has significant clinical activity in the treatment of myeloproliferative neoplasms (MPN), but the precise mechanisms by which it acts are not well understood. Here, we demonstrate that chromatin assembly factor 1 subunit B (CHAF1B), an Unc-51-like kinase 1 (ULK1)-interactive protein in the nuclear compartment of malignant cells, is overexpressed in patients with MPN. Remarkably, targeted silencing of CHAF1B enhances transcription of IFNα-stimulated genes and promotes IFNα-dependent antineoplastic responses in primary MPN progenitor cells. Taken together, our findings indicate that CHAF1B is a promising newly identified therapeutic target in MPN and that CHAF1B inhibition in combination with IFNα therapy might offer a novel strategy for treating patients with MPN. Significance: Our findings raise the potential for clinical development of drugs targeting CHAF1B to enhance IFN antitumor responses in the treatment of patients with MPN and should have important clinical translational implications for the treatment of MPN and possibly in other malignancies.


Assuntos
Neoplasias da Medula Óssea , Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Interferon-alfa/farmacologia , Fator 1 de Modelagem da Cromatina/genética
2.
Nat Commun ; 13(1): 1750, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365653

RESUMO

Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Antivirais/uso terapêutico , Retroalimentação , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Quinases Associadas a rho/metabolismo
3.
Vet Res ; 52(1): 132, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663465

RESUMO

The study aim was to determine the expression of genes potentially related to chronic mastitis at the mRNA and protein levels, viz. chemokine C-C motif receptor 1 (CCR1), C-C motif chemokine ligand 2 (CCL2), C-C motif chemokine ligand 5 (CXCL5), tumor necrosis factor α (TNFα), interleukin 1ß (IL-1ß), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 18 (IL-18), in bovine mammary gland parenchyma. The study examines the differences in expression of selected genes between cows with chronic mastitis caused by coagulase-positive (CoPS) or coagulase-negative staphylococci (CoNS) and those with healthy udders (H). Samples were collected from the udder quarters from 40 Polish Holstein-Friesian cows; 54 of these samples were chosen for analysis based on microbiological analysis of milk taken two days before slaughter. They were categorized into three groups: CoPS (N = 27), CoNS (N = 14) and H (N = 13). The RNA expression was analyzed by RT-qPCR and protein concentration by ELISA. No differences in the mRNA levels of seven genes (TNFα, IL-18, CCR1, IL-1ß, CCL2, IL-8, IL-6) and four proteins (TNFα, IL-18, CCR1, IL-1ß) were identified between the CoPS and H groups. Higher transcript levels of CXCL5 (p ≤ 0.05) gene were noted in CoPS than in H. Compared to H, higher concentrations of IL-8 and CXCL5 (p ≤ 0.05) were observed in CoPS (0.05 < p < 0.1) and CCL2 (0.05 < p < 0.1) in CoNS, while lower levels of Il-6 were found in CoPS. This may suggest that during chronic mastitis the organism stops producing pro-inflammatory cytokines, probably to protect the host tissues against their damage during prolonged infection.


Assuntos
Doenças dos Bovinos/metabolismo , Citocinas/genética , Expressão Gênica , Glândulas Mamárias Animais/metabolismo , Tecido Parenquimatoso/metabolismo , Infecções Estafilocócicas/veterinária , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Doença Crônica/veterinária , Citocinas/metabolismo , Feminino , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus/fisiologia
4.
Oncotarget ; 12(10): 955-966, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34012509

RESUMO

The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.

5.
Oncogene ; 40(18): 3273-3286, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33846574

RESUMO

We provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes. Our studies establish novel regulatory effects of SLFN5 on cell cycle progression through binding/blocking of the transcriptional repressor E2F7, promoting transcription of key genes that stimulate S phase progression. Together, our studies suggest an essential role for SLFN5 in PDAC and support the potential for developing new therapeutic approaches for the treatment of pancreatic cancer through SLFN5 targeting.


Assuntos
Neoplasias Pancreáticas , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas
6.
Vet Res ; 52(1): 41, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676576

RESUMO

MicroRNAs (miRNAs) are short, non-coding RNAs, 21-23 nucleotides in length which are known to regulate biological processes that greatly impact immune system activity. The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. The miRNA profile of the parenchyma was found to change during mastitis, with its profile depending on the type of pathogen. Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identified, including 32 that were differentially expressed (p ≤ 0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identified: 10 were upregulated (p ≤ 0.05), and 2 downregulated (p ≤ 0.05). In addition, comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identified; in both comparisons, differentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identified in each comparison, with 2 being common to both immune system processes and signal transduction. Our results indicate that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).


Assuntos
Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , MicroRNAs/genética , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Transcriptoma , Animais , Bovinos , Coagulase/metabolismo , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Feminino , Perfilação da Expressão Gênica/veterinária , Células do Mesofilo/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia
7.
Chem Biol Drug Des ; 94(4): 1813-1823, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31260185

RESUMO

Mnk kinases (Mnk1 and 2) are downstream effectors of Map kinase pathways and regulate phosphorylation of eukaryotic initiation factor 4E. Engagement of the Mnk pathway is critical in acute myeloid leukemia (AML) leukemogenesis and Mnk inhibitors have potent antileukemic properties in vitro and in vivo, suggesting that targeting Mnk kinases may provide a novel approach for treating AML. Here, we report the development and application of a mutation-based induced-fit in silico screen to identify novel Mnk inhibitors. The Mnk1 structure was modeled by temporarily mutating an amino acid that obstructs the ATP-binding site in the Mnk1 crystal structure while carrying out docking simulations of known inhibitors. The hit compounds display activity in Mnk biochemical and cellular assays, including acute myeloid leukemia progenitors. This approach will enable further rational structure-based drug design of new Mnk inhibitors and potentially novel ways of therapeutically targeting this kinase.


Assuntos
Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
8.
Mol Cancer Res ; 17(6): 1305-1315, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842251

RESUMO

Medulloblastoma is a highly malignant pediatric brain tumor associated with poor outcome. Developing treatments that target the cancer stem cell (CSC) population in medulloblastoma are important to prevent tumor relapse and induce long-lasting clinical responses. We utilized medulloblastoma neurospheres that display CSC characteristics and found activation of the PI3K/AKT pathway in sphere-forming cells. Of all class IA PI3Ks, only the PI3Kα isoform was required for sphere formation by medulloblastoma cells. Knockdown of p110α, but not p110ß or p110δ, significantly disrupted cancer stem cell frequencies as determined by extreme limiting dilution analysis (ELDA), indicating an essential role for the PI3Kα catalytic isoform in medulloblastoma CSCs. Importantly, pharmacologic inhibition of the MAPK-interacting kinase (MNK) enhanced the antineoplastic effects of targeted PI3Kα inhibition in medulloblastoma. This indicates that MNK signaling promotes survival in medulloblastoma, suggesting dual PI3Kα and MNK inhibition may provide a novel approach to target and eliminate medulloblastoma CSCs. We also observed a significant reduction in tumor formation in subcutaneous and intracranial mouse xenograft models, which further suggests that this combinatorial approach may represent an efficient therapeutic strategy for medulloblastoma. IMPLICATIONS: These findings raise the possibility of a unique therapeutic approach for medulloblastoma, involving MNK targeting to sensitize medulloblastoma CSCs to PI3Kα inhibition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , ATPases Transportadoras de Cobre/antagonistas & inibidores , Meduloblastoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/metabolismo , Feminino , Humanos , Meduloblastoma/metabolismo , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Oncotarget ; 10(67): 7112-7121, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31903169

RESUMO

MAPK interacting kinase (MNK), a downstream effector of mitogen-activated protein kinase (MAPK) pathways, activates eukaryotic translation initiation factor 4E (eIF4E) and plays a key role in the mRNA translation of mitogenic and antiapoptotic genes in acute myeloid leukemia (AML) cells. We examined the antileukemic properties of a novel MNK inhibitor, SEL201. Our studies provide evidence that SEL201 suppresses eIF4E phosphorylation on Ser209 in AML cell lines and in primary patient-derived AML cells. Such effects lead to growth inhibitory effects and leukemic cell apoptosis, as well as suppression of leukemic progenitor colony formation. Combination of SEL201 with 5'-azacytidine or rapamycin results in synergistic inhibition of AML cell growth. Collectively, these results suggest that SEL201 has significant antileukemic activity and further underscore the relevance of the MNK pathway in leukemogenesis.

10.
J Biol Chem ; 294(3): 827-837, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30487288

RESUMO

Type I interferons (IFNs) induce expression of multiple genes that control innate immune responses to invoke both antiviral and antineoplastic activities. Transcription of these interferon-stimulated genes (ISGs) occurs upon activation of the canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways. Phosphorylation and acetylation are both events crucial to tightly regulate expression of ISGs. Here, using mouse embryonic fibroblasts and an array of biochemical methods including immunoblotting and kinase assays, we show that sirtuin 2 (SIRT2), a member of the NAD-dependent protein deacetylase family, is involved in type I IFN signaling. We found that SIRT2 deacetylates cyclin-dependent kinase 9 (CDK9) in a type I IFN-dependent manner and that the CDK9 deacetylation is essential for STAT1 phosphorylation at Ser-727. We also found that SIRT2 is subsequently required for the transcription of ISGs and for IFN-driven antiproliferative responses in both normal and malignant cells. These findings establish the existence of a previously unreported signaling pathway whose function is essential for the control of JAK-STAT signaling and the regulation of IFN responses. Our findings suggest that targeting sirtuin activities may offer an avenue in the development of therapies for managing immune-related diseases and cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Sirtuína 2/metabolismo , Acetilação , Animais , Quinase 9 Dependente de Ciclina/genética , Humanos , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT1/genética , Sirtuína 2/genética , Transcrição Gênica , Células U937
11.
Sci Signal ; 11(557)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459284

RESUMO

It is well established that activation of the transcription factor signal transducer and activator of transcription 1 (STAT1) is required for the interferon-γ (IFN-γ)-mediated antiviral response. Here, we found that IFN-γ receptor stimulation also activated Unc-51-like kinase 1 (ULK1), an initiator of Beclin-1-mediated autophagy. Furthermore, the interaction between ULK1 and the mitogen-activated protein kinase kinase kinase MLK3 (mixed lineage kinase 3) was necessary for MLK3 phosphorylation and downstream activation of the kinase ERK5. This autophagy-independent activity of ULK1 promoted the transcription of key antiviral IFN-stimulated genes (ISGs) and was essential for IFN-γ-dependent antiviral effects. These findings define a previously unknown IFN-γ pathway that appears to be a key element of the antiviral response.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Animais , Autofagia , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Camundongos , Família Multigênica , Fosforilação , Ligação Proteica , Receptores de Interferon/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transcrição Gênica , Células U937 , Viroses/metabolismo , Receptor de Interferon gama , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
12.
Neurosci Lett ; 661: 126-131, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28982595

RESUMO

BACKGROUND AND PURPOSE: Ischemic stroke produces significant morbidity and mortality, and acute interventions are limited by short therapeutic windows. Novel approaches to neuroprotection and neurorepair are necessary. HuR is an RNA-binding protein (RBP) which modulates RNA stability and translational efficiency of genes linked to ischemic stroke injury. METHODS: Using a transgenic (Tg) mouse model, we examined the impact of ectopic HuR expression in astrocytes on acute injury evolution after transient middle cerebral artery occlusion (tMCAO). RESULTS: HuR transgene expression was detected in astrocytes in perilesional regions and contralaterally. HuR Tg mice did not improve neurologically 72h after injury, whereas littermate controls did. In Tg mice, increased cerebral vascular permeability and edema were observed. Infarct volume was not affected by the presence of the transgene. CONCLUSIONS: Ectopic expression of HuR in astrocytes worsens outcome after transient ischemic stroke in mice in part by increasing vasogenic cerebral edema. These findings suggest that HuR could be a therapeutic target in cerebral ischemia/reperfusion.


Assuntos
Edema Encefálico/metabolismo , Isquemia Encefálica/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Recuperação de Função Fisiológica/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Edema Encefálico/genética , Isquemia Encefálica/genética , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/genética , Infarto da Artéria Cerebral Média/genética , Camundongos Transgênicos , Recuperação de Função Fisiológica/genética , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/fisiopatologia
13.
BMC Vet Res ; 13(1): 161, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587645

RESUMO

BACKGROUND: Genome-wide gene expression profiling allows for identification of genes involved in the defense response of the host against pathogens. As presented here, transcriptomic analysis and bioinformatics tools were applied in order to identify genes expressed in the mammary gland parenchyma of cows naturally infected with coagulase-positive and coagulase-negative Staphylococci. RESULTS: In cows infected with coagulase-positive Staphylococci, being in 1st or 2nd lactation, 1700 differentially expressed genes (DEGs) were identified. However, examination of the 3rd or 4th lactations revealed 2200 DEGs. Gene ontology functional classification showed the molecular functions of the DEGs overrepresented the activity of cytokines, chemokines, and their receptors. In cows infected with coagulase-negative Staphylococci, in the 1st or 2nd lactations 418 DEGs, while in the 3rd or 4th lactations, 1200 DEGs were identified that involved in molecular functions such as protein, calcium ion and lipid binding, chemokine activity, and protein homodimerization. Gene network analysis showed DEGs associated with inflammation, cell migration, and immune response to infection, development of cells and tissues, and humoral responses to infections caused by both types of Staphylococci. CONCLUSION: A coagulase-positive Staphylococci infection caused a markedly stronger host response than that of coagulase-negative, resulting in vastly increased DEGs. A significant increase in the expression of the FOS, TNF, and genes encoding the major histocompatibility complex proteins (MHC) was observed. It suggests these genes play a key role in the synchronization of the immune response of the cow's parenchyma against mastitis-causing bacteria. Moreover, the following genes that belong to several physiological pathways (KEGG pathways) were selected for further studies as candidate genes of mammary gland immune response for use in Marker Assisted Selection (MAS): chemokine signaling pathway (CCL2, CXCL5, HCK, CCR1), cell adhesion molecules (CAMs) pathway (BOLA-DQA2, BOLA-DQA1, F11R, ITGAL, CD86), antigen processing and presentation pathway (CD8A, PDIA3, LGMN, IFI30, HSPA1A), and NOD-like receptor signaling pathway (TNF, IL8, IL18, NFKBIA).


Assuntos
Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Tecido Parenquimatoso/microbiologia , Infecções Estafilocócicas/genética , Animais , Bovinos , Coagulase/metabolismo , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/veterinária , Mastite Bovina/genética , Família Multigênica , Tecido Parenquimatoso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus/enzimologia
14.
J Biol Chem ; 292(11): 4743-4752, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28174303

RESUMO

The precise signaling mechanisms by which type II IFN receptors control expression of unique genes to induce biological responses remain to be established. We provide evidence that Sin1, a known element of the mammalian target of rapamycin complex 2 (mTORC2), is required for IFNγ-induced phosphorylation and activation of AKT and that such activation mediates downstream regulation of mTORC1 and its effectors. These events play important roles in the assembly of the eukaryotic translation initiation factor 4F (eIF4F) and mRNA translation of IFN-stimulated genes. Interestingly, IFNγ-induced tyrosine phosphorylation of STAT1 is reduced in cells with targeted disruption of Sin1, leading to decreased transcription of several IFNγ-inducible genes in an mTORC2-independent manner. Additionally, our studies establish that Sin1 is essential for generation of type II IFN-dependent antiviral effects and antiproliferative responses in normal and malignant hematopoiesis. Together, our findings establish an important role for Sin1 in both transcription and translation of IFN-stimulated genes and type II IFN-mediated biological responses, involving both mTORC2-dependent and -independent functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Transporte/imunologia , Interferon gama/imunologia , Animais , Linhagem Celular , Humanos , Imunidade Inata , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/imunologia , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/imunologia , Transdução de Sinais
15.
Cytokine ; 89: 116-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27094611

RESUMO

Dysregulation of mRNA translation leads to aberrant activation of cellular pathways that promote expansion and survival of leukemic clones. A key element of the initiation translation complex is eIF4E (eukaryotic translation initiation factor 4E). The mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) pathways play important roles in the regulation of eIF4E expression and downstream functional outcomes. Mitogen-activated protein kinase interacting protein kinases (Mnks) control translation by phosphorylation of eIF4E, whereas the mTOR kinase phosphorylates/de-activates the eIF4E inhibitor, 4E-BP1, to release translational repression. Both pathways are often abnormally activated in leukemia cells and promote cell survival events by controlling expression of oncogenic proteins. Targeting these pathways may provide approaches to avoid aberrant proliferation and neoplastic transformation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
16.
Blood ; 128(3): 410-4, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27307295

RESUMO

Mitogen-activated protein kinase interacting protein kinases (Mnks) play important roles in the development and progression of acute myeloid leukemia (AML) by regulating eukaryotic translation initiation factor 4E (eIF4E) activation. Inhibiting Mnk1/2-induced phosphorylation of eIF4E may represent a unique approach for the treatment of AML. We provide evidence for antileukemic effects of merestinib, an orally bioavailable multikinase inhibitor with suppressive effects on Mnk activity. Our studies show that merestinib effectively blocks eIF4E phosphorylation in AML cells and suppresses primitive leukemic progenitors from AML patients in vitro and in an AML xenograft model in vivo. Our findings provide evidence for potent preclinical antileukemic properties of merestinib and support its clinical development for the treatment of patients with AML.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Transporte de Cátions/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , ATPases Transportadoras de Cobre , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Leucemia Mieloide Aguda/enzimologia , Camundongos , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cytokine Growth Factor Rev ; 29: 17-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068414

RESUMO

The human serine/threonine kinase ULK1 is the human homolog of the Caenorhabditis elegans Unc-51 kinase and of the Saccharomyces cerevisiae autophagy-related protein kinase Atg1. As Unc-51 and Atg1, ULK1 regulates both axon growth and autophagy, respectively, in mammalian cells. However, a novel immunoregulatory role of ULK1 has been recently described. This kinase was shown to be required for regulation of both type I interferon (IFN) production and induction of type I IFN signaling. Optimal regulation of IFN production is crucial for generation of effective IFN-immune responses, and defects in such networks can be detrimental for the host leading to uncontrolled pathogen infection, tumor growth, or autoimmune diseases. Thus, ULK1 plays a central role in IFN-dependent immunity. Here we review the diverse roles of ULK1, with special focus on its importance to type I IFN signaling, and highlight important future study questions.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/imunologia , Autofagia/imunologia , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Transdução de Sinais/imunologia , Animais , Doenças Autoimunes/imunologia , Proteínas Relacionadas à Autofagia/imunologia , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Humanos , Infecções/imunologia , Neoplasias/imunologia , Proteínas Quinases/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/imunologia
18.
J Biol Chem ; 291(5): 2389-96, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26645692

RESUMO

We provide evidence for a unique pathway engaged by the type II IFN receptor, involving mTORC2/AKT-mediated downstream regulation of mTORC1 and effectors. These events are required for formation of the eukaryotic translation initiation factor 4F complex (eIF4F) and initiation of mRNA translation of type II interferon-stimulated genes. Our studies establish that Rictor is essential for the generation of type II IFN-dependent antiviral and antiproliferative responses and that it controls the generation of type II IFN-suppressive effects on normal and malignant hematopoiesis. Together, our findings establish a central role for mTORC2 in IFNγ signaling and type II IFN responses.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Interferon gama/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Antivirais/química , Antivirais/metabolismo , Quimiocina CXCL10/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Knockout , Fosforilação , Polirribossomos/metabolismo , Biossíntese de Proteínas , Proteína Companheira de mTOR Insensível à Rapamicina , Células U937
19.
Cell Rep ; 11(4): 605-17, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25892232

RESUMO

We provide evidence that the Unc-51-like kinase 1 (ULK1) is activated during engagement of the type I interferon (IFN) receptor (IFNR). Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE) and IFNγ activation site (GAS) elements and controls expression of key IFN-stimulated genes (ISGs). We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK) and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway. Importantly, we demonstrate that ULK1 is essential for antiproliferative responses and type I IFN-induced antineoplastic effects against malignant erythroid precursors from patients with myeloproliferative neoplasms. Together, these data reveal a role for ULK1 as a key mediator of type I IFNR-generated signals that control gene transcription and induction of antineoplastic responses.


Assuntos
Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Linhagem Celular Tumoral , Células Cultivadas , Células Eritroides/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transtornos Mieloproliferativos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Elementos de Resposta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Mol Cancer Ther ; 14(1): 202-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344585

RESUMO

Arsenic trioxide (As2O3) exhibits potent antineoplastic effects and is used extensively in clinical oncology for the treatment of a subset of patients with acute myeloid leukemia (AML). Although As2O3 is known to regulate activation of several signaling cascades, the key events, accounting for its antileukemic properties, remain to be defined. We provide evidence that arsenic can directly bind to cysteine 299 in AMPKα and inhibit its activity. This inhibition of AMPK by arsenic is required in part for its cytotoxic effects on primitive leukemic progenitors from patients with AML, while concomitant treatment with an AMPK activator antagonizes in vivo the arsenic-induced antileukemic effects in a xenograft AML mouse model. A consequence of AMPK inhibition is activation of the mTOR pathway as a negative regulatory feedback loop. However, when AMPK expression is lost, arsenic-dependent activation of the kinase RSK downstream of MAPK activity compensates the generation of regulatory feedback signals through phosphorylation of downstream mTOR targets. Thus, therapeutic regimens with As2O3 will need to include inhibitors of both the mTOR and RSK pathways in combination to prevent engagement of negative feedback loops and maximize antineoplastic responses.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Arsenicais/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Óxidos/farmacologia , Animais , Trióxido de Arsênio , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...