Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 99(8): 6654-6664, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27289145

RESUMO

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a critical enzyme within the metabolic networks for gluconeogenesis, hepatic energy metabolism, and tricarboxylic acid cycle function, and is controlled by several transcription factors including hepatic nuclear factor 4α (HNF4α). The primary objective of the present study was to determine whether propionate regulates bovine PCK1 transcription. The second objective was to determine the action of cyclic AMP (cAMP), glucocorticoids, and insulin, hormonal cues known to modulate glucose metabolism, on bovine PCK1 transcriptional activity. The proximal promoter of the bovine PCK1 gene was ligated to a Firefly luciferase reporter and transfected into H4IIE hepatoma cells. Cells were exposed to treatments for 23 h and luciferase activity was determined in cell lysates. Activity of the PCK1 promoter was linearly induced by propionate, and maximally increased 7-fold with 2.5 mM propionate, which was not muted by 100 nM insulin. Activity of the PCK1 promoter was increased 1-fold by either 1.0 mM cAMP or 5.0µM dexamethasone, and 2.2-fold by their combination. Induction by cAMP and dexamethasone was repressed 50% by 100 nM insulin. Propionate, cAMP, and dexamethasone acted synergistically to induce the PCK1 promoter activity. Propionate-responsive regions, identified by 5' deletion analysis, were located between -1,238 and -409 bp and between -85 and +221 bp. Deletions of the core sequences of the 2 putative HNF4α sites decreased the responsiveness to propionate by approximately 40%. These data indicate that propionate regulates its own metabolism through transcriptional stimulation of the bovine PCK1 gene. This induction is mediated, in part, by the 2 putative HNF4α binding sites in the bovine PCK1 promoter.


Assuntos
Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Propionatos , Animais , Sequência de Bases , Bovinos , Fosfoenolpiruvato , Regiões Promotoras Genéticas , Transcrição Gênica
2.
J Dairy Sci ; 99(5): 3908-3915, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26947295

RESUMO

Hepatocytes monolayers from neonatal calves were used to determine the responses of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA expression to propionate and direct hormonal cues including cyclic AMP (cAMP), dexamethasone, and insulin. The responses of other key gluconeogenic genes, including mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphotase (G6PC), were also measured. Expression of PCK1 was linearly induced with increasing propionate concentrations in media and 2.5 mM propionate increased PCK1 mRNA at 3 and 6h of incubation; however, the induction disappeared at 12 and 24 h. The induction of PCK1 mRNA by propionate was mimicked by 1 mM cAMP, or in combination with 5 µM dexamethasone, but not by dexamethasone alone. The induction of PCK1 mRNA by propionate or cAMP was eliminated by addition of 100 nM insulin. Additionally, expression of PCK2 and PC mRNA was also induced by propionate in a concentration-dependent manner. Consistent with PCK1, propionate-stimulated PCK2 and PC mRNA expression was inhibited by insulin. Expression of G6PC mRNA was neither affected by propionate nor cAMP, dexamethasone, insulin, or their combinations. These findings demonstrate that propionate can directly regulate its own metabolism in bovine calf hepatocytes through upregulation of PCK1, PCK2, and PC mRNA expression.


Assuntos
Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Propionatos/metabolismo , Animais , Bovinos , Gluconeogênese/genética , Hepatócitos/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo
3.
J Dairy Sci ; 98(12): 8698-709, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409969

RESUMO

Elevated needs for glucose in lactating dairy cows are met through a combination of increased capacity for gluconeogenesis and increased supply of gluconeogenic precursors, primarily propionate. This study evaluated the effects of propionate on mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1), mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphatase (G6PC), key gluconeogenic enzymes, and capacity for glucose synthesis in liver of dairy cattle. In experiment 1, six multiparous mid-lactation Holstein cows were used in a replicated 3×3 Latin square design consisting of a 6-d acclimation or washout phase followed by 8h of postruminal infusion of either propionate (1.68mol), glucose (0.84mol), or an equal volume (10mL/min) of water. In experiment 2, twelve male Holstein calves [39±4 kg initial body weight (BW)] were blocked by birth date and assigned to receive, at 7d of age, either propionate [2mmol·h(-1)·(BW(0.75))(-1)], acetate [3.5mmol·h(-1)·(BW(.75))(-1)], or an equal volume (4mL/min) of saline. In both experiments, blood samples were collected at 0, 2, 4, 6, and 8h relative to the start of infusion and liver biopsy samples were collected at the end of the infusion for mRNA analysis. Liver explants from experiment 1 were used to measure tricarboxylic acid cycle flux and gluconeogenesis using (13)C mass isotopomer distribution analysis from (13)C3 propionate. Dry matter intake and milk yield were not altered by infusions in cows. Serum insulin concentration in cows receiving propionate was elevated than cows receiving water, but was not different from cows receiving glucose. Hepatic expression of PCK1 and G6PC mRNA and glucose production in cows receiving propionate were not different from cows receiving water, but tended to be higher compared with cows receiving glucose. Hepatic expression of PCK2 and PC mRNA was not altered by propionate infusion in cows. Blood glucose, insulin, and glucagon in calves receiving propionate were not different than controls. Calves receiving propionate had increased PCK1 mRNA, tended to have increased G6PC mRNA, and had similar PC mRNA compared with saline controls. These data indicate a tendency for in vivo effects of propionate to alter hepatic gene expression in mid-lactation cows and neonatal calves, which are consistent with a feed-forward effect of propionate to regulate its own metabolism toward gluconeogenesis through changes in hepatic PCK1 mRNA.


Assuntos
Bovinos/metabolismo , Expressão Gênica/efeitos dos fármacos , Gluconeogênese/genética , Fígado/metabolismo , Propionatos/farmacologia , Animais , Feminino , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lactação/fisiologia , Fígado/química , Leite/química , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Piruvato Carboxilase/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
4.
Nutr Res ; 32(8): 588-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22935342

RESUMO

Nutritional insults during pregnancy and lactation are health risks for mother and offspring. Both fructose (FR) and low-protein (LP) diets are linked to hepatic steatosis and insulin resistance in nonpregnant animals. We hypothesized that dietary FR or LP intake during pregnancy may exacerbate the already compromised glucose homeostasis to induce gestational diabetes and fatty liver. Therefore, we investigated and compared the effects of LP or FR intake on hepatic steatosis and insulin resistance in unmated controls (CTs) and pregnant and lactating rats. Sprague-Dawley rats were fed a CT, or a 63% FR, or an 8% LP diet. Glucose tolerance test at day 17 of the study revealed greater (P < .05) blood glucose at 10 (75.6 mg/dL vs 64.0 ± 4.8 mg/dL) minutes and 20 (72.4 mg/dL vs 58.6 ± 4.0 mg/dL) minutes after glucose dose and greater area under the curve (4302.3 mg∙dL(-1)∙min(-1) vs 3763.4 ± 263.6 mg∙dL(-1)∙min(-1)) for FR-fed dams compared with CT-fed dams. The rats were euthanized at 21 days postpartum. Both the FR- and LP-fed dams had enlarged (P < .05) livers (9.3%, 7.1% body weight vs 4.8% ± 0.2% body weight) and elevated (P < .05) liver triacylglycerol (216.0, 130.0 mg/g vs 19.9 ± 12.6 mg/g liver weight) compared with CT-fed dams. Fructose induced fatty liver and glucose intolerance in pregnant and lactating rats, but not unmated CT rats. The data demonstrate a unique physiological status response to diet resulting in the development of gestational diabetes coupled with hepatic steatosis in FR-fed dams, which is more severe than an LP diet.


Assuntos
Diabetes Gestacional/etiologia , Dieta com Restrição de Proteínas , Sacarose Alimentar/efeitos adversos , Fígado Gorduroso/etiologia , Frutose/efeitos adversos , Intolerância à Glucose/etiologia , Fenômenos Fisiológicos da Nutrição Materna , Animais , Área Sob a Curva , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Gestacional/sangue , Fígado Gorduroso/sangue , Feminino , Intolerância à Glucose/sangue , Teste de Tolerância a Glucose , Homeostase , Resistência à Insulina , Lactação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...