Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 11: 427, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790886

RESUMO

Preconditioning of the brain induces tolerance to the damaging effects of ischemia and prevents cell death in ischemic penumbra. The development of this phenomenon is mediated by mitochondrial adenosine triphosphate-sensitive potassium ([Formula: see text]) channels and nitric oxide signaling (NO). The aim of this study was to investigate the dynamics of molecular changes in mitochondria after ischemic preconditioning (IP) and the effect of pharmacological preconditioning (PhP) with the [Formula: see text]-channels opener diazoxide on NO levels after ischemic stroke in rats. Immunofluorescence-histochemistry and laser-confocal microscopy were applied to evaluate the cortical expression of electron transport chain enzymes, mitochondrial [Formula: see text]-channels, neuronal and inducible NO-synthases, as well as the dynamics of nitrosylation and nitration of proteins in rats during the early and delayed phases of IP. NO cerebral content was studied with electron paramagnetic resonance (EPR) spectroscopy using spin trapping. We found that 24 h after IP in rats, there is a two-fold decrease in expression of mitochondrial [Formula: see text]-channels (p = 0.012) in nervous tissue, a comparable increase in expression of cytochrome c oxidase (p = 0.008), and a decrease in intensity of protein S-nitrosylation and nitration (p = 0.0004 and p = 0.001, respectively). PhP led to a 56% reduction of free NO concentration 72 h after ischemic stroke simulation (p = 0.002). We attribute this result to the restructuring of tissue energy metabolism, namely the provision of increased catalytic sites to mitochondria and the increased elimination of NO, which prevents a decrease in cell sensitivity to oxygen during subsequent periods of severe ischemia.

2.
Pathophysiology ; 18(2): 151-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20888741

RESUMO

This study characterized the actions of the newly synthesized PAF precursor 1-hexadecyl-2-alkylcarbamoyl-glycerol (HAG) on blood pressure (BP) in male spontaneously hypertensive rats (SHR), SHR-stroke prone (SHRSP) and Wistar rats with 1-kidney 1-clip (1K1C) renovascular hypertension used as experimental models of human primary and secondary hypertension. Systolic blood pressure (SBP) in the tail artery and mean arterial pressure (MAP) in the abdominal aorta were measured by tail plethysmography and invasive pressure transducer, respectively. Intravenous treatment with 1mg/kg HAG in SHR resulted in a rapid decline of MAP from 151±4 to 127±4mmHg in 50min (p<0.001) that was maintained for 24h after injection (128±5mmHg, p<0.01). We also observed a profound hypotensive effect of HAG in SHRSP but not in normotensive Wistar rats. In 1K1C rats, the magnitude of the BP decline evoked by HAG was correlated with MAP measured before drug administration (R=0.74, p<0.005). In 1K1C rats with SBP>140mmHg, 5mg/kg/48h HAG, given orally for 14 days, decreased SBP by 20-30mmHg without an increase in the death rate and other adverse effects. Thus, our results show that intravenous and oral administration of HAG led to a long-lasting reduction of BP in experimental models of primary and secondary hypertension. In contrast to PAF and its derivatives, the hypotensive action of HAG was preserved for 24h after a single administration, was absent in normotensive animals, and was not accompanied by visible side-effects, at least during 2 weeks of treatment.

3.
Brain Res ; 995(1): 145-9, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14644480

RESUMO

In our study, we examined middle cerebral artery (MCA) contractile responses in two animal models. After hemorrhagic disturbances in rats of Krushinsky-Molodkina strain (KMRs) a decrease in contractile responses to serotonin (5-HT) was observed. During incomplete global cerebral ischemia, MCAs had increased responsiveness to endothelin-1 (ET-1), but reduced responsiveness to serotonin. These findings suggest that cerebral circulation disorders alter cerebrovascular function possibly leading to secondary disturbances in brain circulation.


Assuntos
Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Artéria Cerebral Média/fisiopatologia , Vasoconstrição/fisiologia , Animais , Isquemia Encefálica/patologia , Hemorragia Cerebral/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Feminino , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Ratos , Ratos Wistar , Serotonina/metabolismo , Serotonina/farmacologia , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...