Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408700

RESUMO

The kinetics of the reaction of hydroxyl radical (OH) with dimethyl methylphosphonate (DMMP, (CH3O)2CH3PO) (reaction 1) OH + DMMP → products (1) was studied at the bath gas (He) pressure of 1 bar over the 295-837 K temperature range. Hydroxyl radicals were produced in the fast reaction of electronically excited oxygen atoms O(1D) with H2O. The time-resolved kinetic profiles of hydroxyl radicals were recorded via UV absorption at around 308 nm using a DC discharge H2O/Ar lamp. The reaction rate constant exhibits a pronounced V-shaped temperature dependence, negative in the low temperature range, 295-530 K (the rate constant decreases with temperature), and positive in the elevated temperature range, 530-837 K (the rate constant increases with temperature), with a turning point at 530 ± 10 K. The rate constant could not be adequately fitted with a standard 3-parameter modified Arrhenius expression. The data were fitted with a 5-parameter expression as: k1 = 2.19 × 10-14(T/298)2.43exp(15.02 kJ mol-1/RT) + 1.71 × 10-10exp(-26.51 kJ mol-1/RT) cm3molecule-1s-1 (295-837 K). In addition, a theoretically predicted pressure dependence for such reactions was experimentally observed for the first time.

2.
J Phys Chem A ; 124(20): 3993-4005, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32396004

RESUMO

The rate constant of the disproportionation channel 1a of the self-reaction of hydroxyl radicals OH + OH → H2O + O (1a) was measured at ambient temperature as well as over an extended temperature range to resolve the discrepancy between the IUPAC recommended value (k1a = 1.48 × 10-12 cm3 molecule-1 s-1, discharge flow system, Bedjanian et al. J. Phys. Chem. A 1999, 103, 7017) and a factor of ca. 1.8 higher value by pulsed laser photolysis (2.7 × 10-12 cm3 molecule-1 s-1, Bahng et al. J. Phys. Chem. A 2007, 111, 3850, and 2.52 × 10-12 cm3 molecule-1 s-1, Altinay et al. J. Phys. Chem. A 2014, 118, 38). To resolve this discrepancy, the rate constant of the title reaction was remeasured in three laboratories using two different experimental techniques, namely, laser-pulsed photolysis-transient UV absorption and fast discharge flow system coupled with mass spectrometry. Two different precursors were used to generate OH radicals in the laser-pulsed photolysis experiments. The experiments confirmed the low value of the rate constant at ambient temperature (k1a = (1.4 ± 0.2) × 10-12 cm3 molecule-1 s-1 at 295 K) as well as the V-shaped temperature dependence, negative at low temperatures and positive at high temperatures, with a turning point at 427 K: k1a = 8.38 × 10-14 × (T/300)1.99 × exp(855/T) cm3 molecule-1 s-1 (220-950 K). Recommended expression over the 220-2384 K temperature range: k1a = 2.68 × 10-14 × (T/300)2.75 × exp(1165/T) cm3 molecule-1 s-1 (220-2384 K).

3.
J Phys Chem A ; 118(6): 955-64, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24467228

RESUMO

In nine polyatomic molecules, we have studied the intramolecular redistribution of vibrational energy from chromophore C═O group excited by a resonant femtosecond IR laser radiation at a wavelength of ∼5 µm. All experiments have been performed in the gas phase using the IR-IR pump-probe technique in combination with the spectral analysis of the probe radiation. For molecules with one C═O end group, characteristic times of intramolecular vibrational redistribution (IVR) lie in the range between 2.4 and 20 ps and correlate with the density of four-frequency Fermi resonances. The IVR times in metal carbonyl molecules are anomalously long, being ∼1.0 ns for Fe(CO)5 and ∼1.5 ns for Cr(CO)6. In the CH3(C═O)OC2H5 and H2CCH(C═O)OC2H5 molecules, it has been observed that there are two characteristic IVR times, which differ by an order of magnitude from each other; this was interpreted in terms of the developed model of "accumulating states". For the ICF2COF molecule, it has been revealed that the IVR time decreases with increasing level of the vibrational excitation of the C═O bond of the molecule.

4.
Photochem Photobiol ; 85(4): 901-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19320849

RESUMO

Infrared multiphoton absorption and dissociation of chloromethyltrifluorosilane molecules under the action of pulsed transversely excited atmospheric pressure CO2 laser were experimentally studied. Dissociation products were analyzed. The dissociation proceeds via chlorine atom transfer from carbon to silicone. High degrees of silicon isotope separation were achieved. The presence of alpha-chlorine atom in a silicon organic compound brings about a significant improvement in multiple photon dissociation characteristics and an essential increase in isotopic selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...