Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 14(1): 15091, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956220

RESUMO

Fibulin-2 is a multidomain, disulfide-rich, homodimeric protein which belongs to a broader extracellular matrix family. It plays an important role in the development of elastic fiber structures. Malfunction of fibulin due to mutation or poor expression can result in a variety of diseases including synpolydactyly, limb abnormalities, eye disorders leading to blindness, cardiovascular diseases and cancer. Traditionally, fibulins have either been produced in mammalian cell systems or were isolated from the extracellular matrix, a procedure that results in poor availability for structural and functional studies. Here, we produced seven fibulin-2 constructs covering 62% of the mature protein (749 out of 1195 residues) using a prokaryotic expression system. Biophysical studies confirm that the purified constructs are folded and that the presence of disulfide bonds within the constructs makes them extremely thermostable. In addition, we solved the first crystal structure for any fibulin isoform, a structure corresponding to the previously suggested three motifs related to anaphylatoxin. The structure reveals that the three anaphylatoxins moieties form a single-domain structure.


Assuntos
Proteínas de Ligação ao Cálcio , Humanos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Estabilidade Proteica , Domínios Proteicos
2.
Plant Biol (Stuttg) ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838092

RESUMO

The floral microenvironment impacts gametophyte viability and plant-pollinator interactions. Plants employ mechanisms to modify floral temperature, including thermogenesis, absorption of solar radiation, and evaporative cooling. Whether floral thermoregulation impacts reproductive fitness, and how floral morphological variation mediates thermoregulatory capacity are poorly understood. We measured temperature of the floral microenvironment in the field and tested for thermogenesis in the lab in early spring flowering Hexastylis arifolia (Aristolochiaceae). We evaluated whether thermoregulatory capacity was associated with floral morphological variation. Finally, we experimentally determined the thermal optimum and tolerance of pollen to assess whether thermoregulation may ameliorate thermal stress to pollen. Pollen germination was optimal near 21 °C, with a 50% tolerance breadth of ~18 °C. In laboratory conditions, flowers exhibited thermogenesis of 1.5-4.8 °C for short intervals within a conserved timeframe (08:00-09:00 h). In the field, temperature inside the floral tube often deviated from ambient - floral interiors were up to 4 °C above ambient when it was cold, but some fell nearly 10 °C below ambient during peak heat. Flowers with smaller openings were cooler and more thermally stable than those with larger openings during peak heat. Thermoregulation maintained a floral microenvironment within the thermal tolerance breadth of pollen. Results suggest that H. arifolia flowers have a stronger capacity to cool than to warm, and that narrower floral openings create a distinct floral microenvironment, enhancing floral cooling effects. While deviation of floral temperature from ambient conditions maintains a suitable environment for pollen and suggests an adaptive role of thermoregulation, we discuss adaptive and nonadaptive mechanisms underlying floral warming and cooling.

3.
Matrix Biol ; 125: 73-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081527

RESUMO

Collagen biosynthesis requires several co- and post-translational modifications of lysine and proline residues to form structurally and functionally competent collagen molecules. Formation of 4-hydroxyproline (4Hyp) in Y-position prolines of the repetitive -X-Y-Gly- sequences provides thermal stability for the triple-helical collagen molecules. 4Hyp formation is catalyzed by a collagen prolyl 4-hydroxylase (C-P4H) family consisting of three isoenzymes. Here we identify specific roles for the two main C-P4H isoenzymes in collagen hydroxylation by a detailed 4Hyp analysis of type I and IV collagens derived from cell and tissue samples. Loss of C-P4H-I results in underhydroxylation of collagen where the affected prolines are not uniformly distributed, but mainly present in sites where the adjacent X-position amino acid has a positively charged or a polar uncharged side chain. In contrast, loss of C-P4H-II results in underhydroxylation of triplets where the X-position is occupied by a negatively charged amino acid glutamate or aspartate. Hydroxylation of these triplets was found to be important as loss of C-P4H-II alone resulted in reduced collagen melting temperature and altered assembly of collagen fibrils and basement membrane. The observed C-P4H isoenzyme differences in substrate specificity were explained by selective binding of the substrate to the active site resulting in distinct differences in Km and Vmax values. Furthermore, our results clearly show that the substrate proline selection is not dependent on the collagen type, but the main determinant is the X-position amino acid of the -X-Pro-Gly- triplet. Although our data clearly shows the necessity of both C-P4H-I and II for normal prolyl 4-hydroxylation and function of collagens, the mRNA expression of the isoenzymes with various procollagens was, surprisingly, not tightly coordinated, suggesting additional levels of control. In conclusion, this study provides a molecular level explanation for the need of multiple C-P4H isoenzymes to generate collagen molecules capable to assemble into intact extracellular matrix structures.


Assuntos
Dipeptídeos , Isoenzimas , Prolil Hidroxilases , Prolil Hidroxilases/genética , Isoenzimas/genética , Colágeno Tipo I/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/química , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Colágeno/genética , Colágeno/metabolismo , Prolina/metabolismo
4.
Nat Commun ; 14(1): 619, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739436

RESUMO

Mitochondrial fatty acid synthesis (mtFAS) is essential for respiratory function. MtFAS generates the octanoic acid precursor for lipoic acid synthesis, but the role of longer fatty acid products has remained unclear. The structurally well-characterized component of mtFAS, human 2E-enoyl-ACP reductase (MECR) rescues respiratory growth and lipoylation defects of a Saccharomyces cerevisiae Δetr1 strain lacking native mtFAS enoyl reductase. To address the role of longer products of mtFAS, we employed in silico molecular simulations to design a MECR variant with a shortened substrate binding cavity. Our in vitro and in vivo analyses indicate that the MECR G165Q variant allows synthesis of octanoyl groups but not long chain fatty acids, confirming the validity of our computational approach to engineer substrate length specificity. Furthermore, our data imply that restoring lipoylation in mtFAS deficient yeast strains is not sufficient to support respiration and that long chain acyl-ACPs generated by mtFAS are required for mitochondrial function.


Assuntos
Mitocôndrias , Oxirredutases , Humanos , Ácidos Graxos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Respiração , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)
5.
J Biol Chem ; 298(12): 102614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265586

RESUMO

Collagen prolyl 4-hydroxylases (C-P4H) are α2ß2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ß-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ß/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ß/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b', and a' domains of the ß/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ß-strand, which is the edge strand of its major antiparallel ß-sheet. This extra region of the CAT domain interacts tightly with the ß/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a' domain and tight hydrophobic interactions with the b' domain. Using this new information, the structure of the mature C-P4H-II α2ß2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.


Assuntos
Prolil Hidroxilases , Isomerases de Dissulfetos de Proteínas , Humanos , Domínio Catalítico , Colágeno/metabolismo , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Conformação Proteica
6.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 840-853, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34076597

RESUMO

The Saccharomyces cerevisiae Rsm22 protein (Sc-Rsm22), encoded by the nuclear RSM22 (systematic name YKL155c) gene, is a distant homologue of Rsm22 from Trypanosoma brucei (Tb-Rsm22) and METTL17 from mouse (Mm-METTL17). All three proteins have been shown to be associated with mitochondrial gene expression, and Sc-Rsm22 has been documented to be essential for mitochondrial respiration. The Sc-Rsm22 protein comprises a polypeptide of molecular weight 72.2 kDa that is predicted to harbor an N-terminal mitochondrial targeting sequence. The precise physiological function of Rsm22-family proteins is unknown, and no structural information has been available for Sc-Rsm22 to date. In this study, Sc-Rsm22 was expressed and purified in monomeric and dimeric forms, their folding was confirmed by circular-dichroism analyses and their low-resolution structures were determined using a small-angle X-ray scattering (SAXS) approach. The solution structure of the monomeric form of Sc-Rsm22 revealed an elongated three-domain arrangement, which differs from the shape of Tb-Rsm22 in its complex with the mitochondrial small ribosomal subunit in T. brucei (PDB entry 6sg9). A bioinformatic analysis revealed that the core domain in the middle (Leu117-Asp462 in Sc-Rsm22) resembles the corresponding region in Tb-Rsm22, including a Rossmann-like methyltransferase fold followed by a zinc-finger-like structure. The latter structure is not present in this position in other methyltransferases and is therefore a unique structural motif for this family. The first half of the C-terminal domain is likely to form an OB-fold, which is typically found in RNA-binding proteins and is also seen in the Tb-Rsm22 structure. In contrast, the N-terminal domain of Sc-Rsm22 is predicted to be fully α-helical and shares no sequence similarity with other family members. Functional studies demonstrated that the monomeric variant of Sc-Rsm22 methylates mitochondrial tRNAs in vitro. These data suggest that Sc-Rsm22 is a new and unique member of the RNA methyltransferases that is important for mitochondrial protein synthesis.


Assuntos
Modelos Moleculares , Proteínas Ribossômicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Elementos Estruturais de Proteínas
7.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 151-163, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33559605

RESUMO

The web-based IceBear software is a versatile tool to monitor the results of crystallization experiments and is designed to facilitate supervisor and student communications. It also records and tracks all relevant information from crystallization setup to PDB deposition in protein crystallography projects. Fully automated data collection is now possible at several synchrotrons, which means that the number of samples tested at the synchrotron is currently increasing rapidly. Therefore, the protein crystallography research communities at the University of Oulu, Weizmann Institute of Science and Diamond Light Source have joined forces to automate the uploading of sample metadata to the synchrotron. In IceBear, each crystal selected for data collection is given a unique sample name and a crystal page is generated. Subsequently, the metadata required for data collection are uploaded directly to the ISPyB synchrotron database by a shipment module, and for each sample a link to the relevant ISPyB page is stored. IceBear allows notes to be made for each sample during cryocooling treatment and during data collection, as well as in later steps of the structure determination. Protocols are also available to aid the recycling of pins, pucks and dewars when the dewar returns from the synchrotron. The IceBear database is organized around projects, and project members can easily access the crystallization and diffraction metadata for each sample, as well as any additional information that has been provided via the notes. The crystal page for each sample connects the crystallization, diffraction and structural information by providing links to the IceBear drop-viewer page and to the ISPyB data-collection page, as well as to the structure deposited in the Protein Data Bank.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Software , Bases de Dados de Proteínas , Internet
8.
J Biol Chem ; 296: 100197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334883

RESUMO

Prolyl 4-hydroxylases (P4Hs) catalyze post-translational hydroxylation of peptidyl proline residues. In addition to collagen P4Hs and hypoxia-inducible factor P4Hs, a third P4H-the poorly characterized endoplasmic reticulum-localized transmembrane prolyl 4-hydroxylase (P4H-TM)-is found in animals. P4H-TM variants are associated with the familiar neurological HIDEA syndrome, but how these variants might contribute to disease is unknown. Here, we explored this question in a structural and functional analysis of soluble human P4H-TM. The crystal structure revealed an EF domain with two Ca2+-binding motifs inserted within the catalytic domain. A substrate-binding groove was formed between the EF domain and the conserved core of the catalytic domain. The proximity of the EF domain to the active site suggests that Ca2+ binding is relevant to the catalytic activity. Functional analysis demonstrated that Ca2+-binding affinity of P4H-TM is within the range of physiological Ca2+ concentration in the endoplasmic reticulum. P4H-TM was found both as a monomer and a dimer in the solution, but the monomer-dimer equilibrium was not regulated by Ca2+. The catalytic site contained bound Fe2+ and N-oxalylglycine, which is an analogue of the cosubstrate 2-oxoglutarate. Comparison with homologous P4H structures complexed with peptide substrates showed that the substrate-interacting residues and the lid structure that folds over the substrate are conserved in P4H-TM, whereas the extensive loop structures that surround the substrate-binding groove, generating a negative surface potential, are different. Analysis of the structure suggests that the HIDEA variants cause loss of P4H-TM function. In conclusion, P4H-TM shares key structural elements with other P4Hs while having a unique EF domain.


Assuntos
Dioxigenases/química , Prolil Hidroxilases/química , Cristalografia por Raios X , Motivos EF Hand , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
9.
Amino Acids ; 52(4): 619-627, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32219587

RESUMO

The trimeric transmembrane collagen BP180, also known as collagen XVII, is an essential component of hemidesmosomes at the dermal-epidermal junction and connects the cytoplasmic keratin network to the extracellular basement membrane. Dysfunction of BP180 caused by mutations in patients with junctional epidermolysis bullosa or autoantibodies in those with bullous pemphigoid leads to severe skin blistering. The extracellular collagenous domain of BP180 participates in the protein's triple-helical folding, but the structure and functional importance of the intracellular domain (ICD) of BP180 are largely unknown. In the present study, we purified and characterized human BP180 ICD. When expressed in Escherichia coli as glutathione-S-transferase or 6 × histidine tagged fusion protein, the BP180 ICD was found to exist as a monomer. Analysis of the secondary structure content by circular dichroism spectroscopy revealed that the domain is intrinsically disordered. This finding aligned with that of a bioinformatic analysis, which predicted a disordered structure. Interestingly, both anionic detergent micelles and lipid vesicles induced partial folding of the BP180 ICD, suggesting that in its natural environment, the domain's folding and unfolding may be regulated by interaction with the cell membrane or accompanying proteins. We hypothesize that the intrinsically disordered structure of the ICD of BP180 contributes to the mechanism that allows the remodeling of hemidesmosome assembly.


Assuntos
Autoantígenos/química , Colágenos não Fibrilares/química , Dobramento de Proteína , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Autoantígenos/genética , Biologia Computacional , Citoplasma/metabolismo , Escherichia coli , Hemidesmossomos/química , Hemidesmossomos/metabolismo , Humanos , Micelas , Colágenos não Fibrilares/genética , Penfigoide Bolhoso/genética , Penfigoide Bolhoso/metabolismo , Domínios Proteicos , Colágeno Tipo XVII
10.
Protein Sci ; 27(9): 1692-1703, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30168208

RESUMO

The peptide-substrate-binding (PSB) domain of collagen prolyl 4-hydroxylase (C-P4H, an α2 ß2 tetramer) binds proline-rich procollagen peptides. This helical domain (the middle domain of the α subunit) has an important role concerning the substrate binding properties of C-P4H, although it is not known how the PSB domain influences the hydroxylation properties of the catalytic domain (the C-terminal domain of the α subunit). The crystal structures of the PSB domain of the human C-P4H isoform II (PSB-II) complexed with and without various short proline-rich peptides are described. The comparison with the previously determined PSB-I peptide complex structures shows that the C-P4H-I substrate peptide (PPG)3 , has at most very weak affinity for PSB-II, although it binds with high affinity to PSB-I. The replacement of the middle PPG triplet of (PPG)3 to the nonhydroxylatable PAG, PRG, or PEG triplet, increases greatly the affinity of PSB-II for these peptides, leading to a deeper mode of binding, as compared to the previously determined PSB-I peptide complexes. In these PSB-II complexes, the two peptidyl prolines of its central P(A/R/E)GP region bind in the Pro5 and Pro8 binding pockets of the PSB peptide-binding groove, and direct hydrogen bonds are formed between the peptide and the side chains of the highly conserved residues Tyr158, Arg223, and Asn227, replacing water mediated interactions in the corresponding PSB-I complex. These results suggest that PxGP (where x is not a proline) is the common motif of proline-rich peptide sequences that bind with high affinity to PSB-II.


Assuntos
Peptídeos/química , Prolil Hidroxilases/química , Humanos , Peptídeos/metabolismo , Prolil Hidroxilases/metabolismo , Ligação Proteica , Conformação Proteica
11.
BMC Obes ; 4: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28078092

RESUMO

BACKGROUND: Obesity has a multifaceted etiology that involves genetic, biological and behavioral factors, body growth, eating habits, energy expenditure and the function of adipose tissue. The present study aimed to expand upon knowledge about the relationships among obesity, emotions and eating habits in severely obese individuals using a case-control method. METHODS: The subject group consisted of 112 individuals (81 females and 31 males) receiving a permanent disability pension primarily for obesity. The control subjects were randomly selected from the same area and were receiving a disability pension for a different primary illness. The controls were matched with the subjects by the place of residence, sex, age, the time since the pension was granted and occupation. Psychiatric interviews were conducted on all participants. The results were analyzed using the chi-squared test (χ2-test) and the percent distribution. The subject and control groups were compared using the t-test for paired variables. Conditional logistic regression analysis was also conducted. RESULTS: The emotional state of eating was significantly associated with quarrels and feelings of loneliness. The subjects suffered from night eating syndrome, which was associated with an increased risk of early retirement. Binge eating syndrome was observed more frequently in the study group. The subjects reported feeling increased hunger compared with the controls. A significant percentage of the subjects had a body mass index of ≥ 40. No differences in eating habits were observed between the groups. CONCLUSION: This study provides information on the relationship between emotions and eating habits in obesity, which is a rarely studied topic. We believe that our study provides a novel and necessary overview of the associations among severe obesity, emotions and eating habits.

12.
Biochem J ; 474(5): 751-769, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28093469

RESUMO

Collagen prolyl 4-hydroxylase (C-P4H), an α2ß2 heterotetramer, is a crucial enzyme for collagen synthesis. The α-subunit consists of an N-terminal dimerization domain, a central peptide substrate-binding (PSB) domain, and a C-terminal catalytic (CAT) domain. The ß-subunit [also known as protein disulfide isomerase (PDI)] acts as a chaperone, stabilizing the functional conformation of C-P4H. C-P4H has been studied for decades, but its structure has remained elusive. Here, we present a three-dimensional small-angle X-ray scattering model of the entire human C-P4H-I heterotetramer. C-P4H is an elongated, bilobal, symmetric molecule with a length of 290 Å. The dimerization domains from the two α-subunits form a protein-protein dimer interface, assembled around the central antiparallel coiled-coil interface of their N-terminal α-helices. This region forms a thin waist in the bilobal tetramer. The two PSB/CAT units, each complexed with a PDI/ß-subunit, form two bulky lobes pointing outward from this waist region, such that the PDI/ß-subunits locate at the far ends of the ßααß complex. The PDI/ß-subunit interacts extensively with the CAT domain. The asymmetric shape of two truncated C-P4H-I variants, also characterized in the present study, agrees with this assembly. Furthermore, data from these truncated variants show that dimerization between the α-subunits has an important role in achieving the correct PSB-CAT assembly competent for catalytic activity. Kinetic assays with various proline-rich peptide substrates and inhibitors suggest that, in the competent assembly, the PSB domain binds to the procollagen substrate downstream from the CAT domain.


Assuntos
Prolina/química , Prolil Hidroxilases/química , Subunidades Proteicas/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Prolina/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Difração de Raios X
13.
Protein Sci ; 25(5): 987-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26914207

RESUMO

The type III secretion system (T3SS) is required for the virulence of many gram-negative bacterial human pathogens. It is composed of several structural proteins, forming the secretion needle and its basis, the basal body. In Chlamydia spp., the T3SS inner membrane ring (IM-ring) of the basal body is formed by the periplasmic part of CdsD (outer ring) and CdsJ (inner ring). Here we describe the crystal structure of the C-terminal, periplasmic part of CdsD, not including the last 60 residues. Two crystal forms were obtained, grown in three different crystallization conditions. In both crystal forms there is one molecule per asymmetric unit adopting a similar extended structure. The structures consist of three periplasmic domains (PDs) of similar αßßαß topology as seen also in the structures of the homologous PrgH (Salmonella typhimurium) and YscD (Yersinia enterocolitica). Only in the C2 crystal form, there is a C-terminal additional helix after the PD3 domain. The relative orientation of the three subsequent CdsD PD domains with respect to each other is more extended than in PrgH but less extended than in YscD. Small-angle X-ray scattering data show that also in solution this CdsD construct adopts the same elongated shape. In both crystal forms the CdsD molecules are packed in a parallel fashion, using translational crystallographic symmetry. The most extensive crystal contacts are preserved in both crystal forms, suggesting a possible mode of assembly of the CdsD periplasmic part into a 24-mer complex forming the outer ring of the IM-ring of the T3SS.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/metabolismo , Sistemas de Secreção Tipo III/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/química , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo
14.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2178-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527136

RESUMO

Δ(3),Δ(2)-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomal Saccharomyces cerevisiae ECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3',5'-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bonded to the Asn101 side chain and is further hydrogen-bonded to the side chain of Arg100 in the apo structure. Arg100 is completely buried in the apo structure and a conformational change of the Arg100 side chain appears to be important for substrate binding and catalysis. The oxyanion hole is formed by the NH groups of Ala70 (loop 2) and Leu126 (helix 3). The O atoms of the corresponding peptide units, Gly69 O and Gly125 O, are both part of extensive hydrogen-bond networks. These hydrogen-bond networks are a conserved feature of the crotonase oxyanion hole and their importance for catalysis is discussed.


Assuntos
Acil Coenzima A/metabolismo , Dodecenoil-CoA Isomerase/química , Dodecenoil-CoA Isomerase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Acil Coenzima A/química , Domínio Catalítico , Estabilidade Enzimática , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
15.
FEBS J ; 282(4): 746-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25515061

RESUMO

The catalytic domain of the trimeric human Δ(3),Δ(2)-enoyl-CoA isomerase, type 2 (HsECI2), has the typical crotonase fold. In the active site of this fold two main chain NH groups form an oxyanion hole for binding the thioester oxygen of the 3E- or 3Z-enoyl-CoA substrate molecules. A catalytic glutamate is essential for the proton transfer between the substrate C2 and C4 atoms for forming the product 2E-enoyl-CoA, which is a key intermediate in the ß-oxidation pathway. The active site is covered by the C-terminal helix-10. In HsECI2, the isomerase domain is extended at its N terminus by an acyl-CoA binding protein (ACBP) domain. Small angle X-ray scattering analysis of HsECI2 shows that the ACBP domain protrudes out of the central isomerase trimer. X-ray crystallography of the isomerase domain trimer identifies the active site geometry. A tunnel, shaped by loop-2 and extending from the catalytic site to bulk solvent, suggests a likely mode of binding of the fatty acyl chains. Calorimetry data show that the separately expressed ACBP and isomerase domains bind tightly to fatty acyl-CoA molecules. The truncated isomerase variant (without ACBP domain) has significant enoyl-CoA isomerase activity; however, the full-length isomerase is more efficient. Structural enzymological studies of helix-10 variants show the importance of this helix for efficient catalysis. Its hydrophobic side chains, together with residues from loop-2 and loop-4, complete a hydrophobic cluster that covers the active site, thereby fixing the thioester moiety in a mode of binding competent for efficient catalysis.


Assuntos
Dodecenoil-CoA Isomerase/química , Dodecenoil-CoA Isomerase/metabolismo , Calorimetria , Catálise , Dicroísmo Circular , Cristalografia por Raios X , Dodecenoil-CoA Isomerase/genética , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
16.
Int J Obes (Lond) ; 39(2): 189-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24909829

RESUMO

Recent epidemiologic papers are presenting prevalence data suggesting breaks and decreases in obesity rates. However, before concluding that the obesity epidemic is not increasing anymore, the validity of the presented data should be discussed more thoroughly. We had a closer look into the literature presented in recent reviews to address the major potential biases and distortions, and to develop insights about how to interpret the presented suggestions for a potential break in the obesity epidemic. Decreasing participation rates, the use of reported rather than measured data and small sample sizes, or lack of representativeness, did not seem to explain presented breaks in the obesity epidemic. Further, available evidence does not suggest that stabilization of obesity rates is seen in higher socioeconomic groups only, or that urbanization could explain a potential break in the obesity epidemic. However, follow-ups of short duration may, in part, explain the apparent break or decrease in the obesity epidemic. On the other hand, a single focus on body mass index (BMI) ⩾25 or ⩾30 kg m(-)(2) is likely to mask a real increase in the obesity epidemic. And, in both children and adults, trends in waist circumferences were generally suggesting an increase, and were stronger than those reported for trends in BMI. Studies concluding that there is a recent break in the obesity epidemic need to be interpreted with caution. Reported studies presenting a break were mostly of short duration. Further, focusing on trends in waist circumference rather than BMI leads to a less optimistic conclusion: the public health problem of obesity is still increasing.


Assuntos
Epidemias/estatística & dados numéricos , Inquéritos Nutricionais/estatística & dados numéricos , Obesidade/epidemiologia , Viés , Índice de Massa Corporal , Interpretação Estatística de Dados , Humanos , Formulação de Políticas , Prevalência , Saúde Pública , Fatores Socioeconômicos , Circunferência da Cintura
17.
Structure ; 21(12): 2107-18, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24207127

RESUMO

Collagen prolyl 4-hydroxylase (C-P4H) catalyzes the proline hydroxylation of procollagen, an essential modification in the maturation of collagens. C-P4H consists of two catalytic α subunits and two protein disulfide isomerase ß subunits. The assembly of these subunits is unknown. The α subunit contains an N domain (1-143), a peptide-substrate-binding-domain (PSB, 144-244) and a catalytic domain (245-517). Here, we report the dimeric structure of the N-terminal region (1-244) of the α subunit. It is shown that the N domain has an important role in the assembly of the C-P4H tetramer, by forming an extended four-helix bundle that includes an antiparallel coiled-coil dimerization motif between the two α subunits. Complexes of this construct with a C-P4H inhibitor and substrate show the mode of peptide-binding to the PSB domain. Both peptides adopt a poly-(L)-proline-type-II helix conformation and bind in a curved, asymmetric groove lined by conserved tyrosines and an Arg-Asp salt bridge.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Especificidade por Substrato
18.
Clin Obes ; 2(1-2): 57-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25586048

RESUMO

UNLABELLED: What is already known about this subject • Recent obesity trends across the world in adults are mixed, varying from showing signs of levelling off to a continuously increasing prevalence. • Secular trends in body mass index (BMI) and waist circumference may vary by sex and age. • Relying exclusively on BMI data may lead to underestimate the obesity epidemic. What this study adds • Adverse trends in obesity indicators have continued in Finland in the 2000s. • In older men, BMI remained quite stable and in older women BMI has decreased since 1997. • Steep upward trends in abdominal obesity (waist circumference and waist-to-height ratio, WHtR) have taken place in both men and women and in all age groups, especially during the past 10 years. • The impact of BMI adjustment on trends in abdominal obesity varied by age such that increases in BMI-adjusted waist circumference and WHtR were more prominent in older age groups. SUMMARY: Signs that obesity trends will level off at the turn of the 21st century have been reported. In these studies, however, the definition of obesity has been based only on body mass index (BMI). We investigated obesity trends among Finnish adults over recent years by using BMI, waist circumference and waist-to-height ratio as indicators for obesity. Data were derived from the national FINRISK surveys, which are cross-sectional population surveys conducted at 5-year intervals between 1992 and 2007. Altogether, 20 551 randomly selected men and women aged 25-64 years participated in health examinations, where weight, height, and waist and hip circumferences were measured by trained nurses. Mean BMI increased in younger men and women (aged 25-44 years) between 1992 and 2007, whereas in older men, BMI remained quite stable and in older women BMI has decreased since 1997. Nevertheless, mean waist circumference and waist-to-height ratio increased in both men and women over the 15-year period. The upward trends took place in all age groups, especially during the past 10 years. Adverse trends in obesity indicators have continued in Finland in the 2000s. In particular, concerns are related to steep upward trends in abdominal obesity.

19.
Eur J Clin Nutr ; 65(7): 841-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21487427

RESUMO

BACKGROUND: Waist circumference (WC) and waist-to-height ratio (WHtR) begin to gain attention as measures of adiposity and as important cardiometabolic disease risk factors also among children. Still, little research has been done on behavioral determinants of WC and WHtR in children. The purpose of this study was to examine associations between health behaviors, WC and WHtR in children. METHODS: The study was a cross-sectional study conducted in Swedish-speaking schools in Helsinki region in 2006. In all, 1146 children were recruited, from which 55 % took part in the study. A total of 604 9-11-year-old children (312 girls, 292 boys) were measured by research staff and completed a study questionnaire on their health behaviors, including breakfast intake, TV viewing, sleep duration and physical activity, and a 16-item food frequency questionnaire. Covariance analysis was used as the statistical analysis method. RESULTS: When controlling for other health behaviors, for example, irregular breakfast (B-coefficient 2.49 CI, 0.64-4.34; P<0.01), TV viewing (B-coefficient 0.89 CI, 0.17-1.61; P<0.05), a TV in child's room (B-coefficient 2.30 CI, 0.73-3.86; P<0.01) and physical inactivity during school breaks (B-coefficient 0.78 CI, 0.19-1.37; P<0.01) were associated with larger WC. Results were similar with WHtR. CONCLUSIONS: Many health behaviors were related to children's WC and WHtR. Determinants were associated to both WC and WHtR similarly.


Assuntos
Estatura , Comportamento Infantil , Comportamentos Relacionados com a Saúde , Síndrome Metabólica/epidemiologia , Circunferência da Cintura , Algoritmos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/psicologia , Criança , Estudos Transversais , Dieta , Comportamento Alimentar , Feminino , Finlândia/epidemiologia , Humanos , Masculino , Síndrome Metabólica/psicologia , Atividade Motora , Fatores de Risco , Comportamento Sedentário , Inquéritos e Questionários , Saúde da População Urbana
20.
Biochem J ; 435(3): 771-81, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21320074

RESUMO

All of the peroxisomal ß-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.


Assuntos
Oxirredutases do Álcool/metabolismo , Carbono-Oxigênio Liases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Enoil-CoA Hidratase/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Oxirredutases do Álcool/genética , Animais , Carbono-Oxigênio Liases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Enoil-CoA Hidratase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Complexos Multienzimáticos/genética , Oxirredutases/genética , Plasmídeos , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...