Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Anal Chim Acta ; 1010: 37-43, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29447669

RESUMO

Glucose enzyme biosensors have been used for a variety of applications such as medical diagnosis, bioprocess engineering, beverage industry and environmental scanning etc. and there is still a growing interest in glucose sensors. For this purpose, addressed herein, as a novel glucose sensor, highly sensitive activated carbon (AC) decorated monodisperse nickel and palladium alloy nanocomposites modified glassy carbon electrode (Ni-Pd@AC/GCE NCs) have been synthesized by in-situ reduction technique. Raman Spectroscopy (RS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA) were used for the characterization of the prepared non-enzymatic glucose sensor. The characteristic sensor properties of the Ni-Pd@AC/GCE electrode were compared with Ni-Pd NCs/GCE, Ni@AC/GCE and Pd@AC/GCE and the results demonstrate that the AC is very effective in the enhancement of the electrocatalytic properties of sensor. In addition, the Ni-Pd@AC/GCE nanocomposites showed a very low detection limit of 0.014 µM, a wide linear range of 0.01 mM-1 mM and a very high sensitivity of 90 mA mM-1 cm-2. Furthermore, the recommended sensor offer the various advantageous such as facile preparation, fast response time, high selectivity and sensitivity. Lastly, monodisperse Ni-Pd@AC/GCE was utilized to detect glucose in real sample species.


Assuntos
Técnicas Biossensoriais , Carbono/química , Glucose/análise , Nanocompostos/química , Níquel/química , Paládio/química , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA