Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 23(8): 497-504, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28657470

RESUMO

Adipose-derived stromal vascular fraction (SVF) cell populations are being evaluated for numerous clinical applications. The current study evaluated a point-of-care technology, the Tissue Genesis "TGI 1000" Cell Isolation System™, to perform an automated isolation of adipose-derived SVF cells to be used in the fabrication of a tissue-engineered vascular graft in the operating room. A total of seven patients were enrolled in this study and received femoral to tibial expanded polytetrafluoroethylene bypass grafts to treat peripheral arterial disease. Lipoaspiration of fat was performed on five patients, and the fat sample was processed immediately in the automated system in the operating room. The mean processing time, from the point of fat delivery into the instrument to removal of the SVF-containing syringe, was 70 min. The SVF cell population was evaluated for cell yield, cell viability, endotoxin levels, and microbial contamination. Samples of the SVF preparation were further subjected to microbiologic evaluation both microscopically before implantation of the graft and through a microbiologic screening using aerobic and anaerobic culture conditions. Mean cell yield was 1E5 cells per cc of fat, and endotoxin levels were below the FDA recognized standards. All SVF preparations were released for graft preparation, and the intimal surface of 90-cm-long grafts was pressure sodded with cells at a concentration of 2E5 cells/cm2. The sodded grafts (n = 5) and control grafts (n = 2) were immediately implanted and graft patency assessed for 1 year. One year patency was 60% for sodded grafts and 50% for control grafts. Automated preparation of autologous adipose-derived SVF cells for immediate use to create cellular linings on vascular grafts is feasible and safe.


Assuntos
Tecido Adiposo/citologia , Separação Celular/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Politetrafluoretileno/química , Células Estromais/citologia , Transplantes/transplante , Idoso , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Ultrassonografia
2.
Int Orthop ; 40(4): 759-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26224616

RESUMO

PURPOSE: Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as "fatty degeneration." As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear. METHODS: Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 10(5) or 3 × 10(6) human SVFCs into supraspinatus muscles. RESULTS: Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 10(5), p = 0.04 for 3 × 10(6)), and no differences between groups for lipid content or force production were observed. CONCLUSIONS: As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Músculo Esquelético/patologia , Lesões do Manguito Rotador , Traumatismos dos Tendões/terapia , Cicatrização , Adulto , Animais , Doença Crônica , Fibrose , Humanos , Masculino , Ratos , Manguito Rotador/efeitos dos fármacos , Manguito Rotador/patologia , Células Estromais
3.
Tissue Eng Part A ; 19(11-12): 1295-302, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23350681

RESUMO

We evaluated the use of an automated, point-of-care instrument to derive canine adipose stromal vascular fraction cells, and the subsequent deposition of these cells onto the luminal surface of an expanded polytetrafluoroethylene (ePTFE) vascular graft for use as a bypass graft. The hypothesis evaluated was that an instrument requiring minimal user interface will provide a therapeutic dose of cells to improve the patency of synthetic vascular grafts in an autologous animal model of graft patency. The stromal vascular fraction (SVF) cells were isolated using an automated adipose tissue processing and cell isolation system and cells sodded onto the surface of an ePTFE vascular graft. Control grafts, used off-the-shelf without cell treatment were used as a control to assess patency effects. Each animal received a control, untreated graft implanted in one carotid artery, and the cell-treated graft implanted in the carotid artery on the contralateral side. The grafts were implanted for 6 months utilizing 12 animals. Results indicate a fully automated adipose tissue processing system will consistently produce functional autologous cells for immediate use in the operating room. Cell-sodded polymeric grafts exhibited improved patency compared to control grafts after 6 month implantation in the canine carotid artery model.


Assuntos
Tecido Adiposo/citologia , Prótese Vascular , Separação Celular/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Politetrafluoretileno/farmacologia , Grau de Desobstrução Vascular/efeitos dos fármacos , Animais , Automação , Artérias Carótidas/efeitos dos fármacos , Cães , Microscopia de Fluorescência , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/ultraestrutura
4.
Tissue Eng ; 10(5-6): 755-61, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15265292

RESUMO

Surgical tendon repair is limited by the availability of viable tissue for transplantation. Because of its relatively avascular nature, tendon is a prime candidate for engineered tissue replacement. To address this problem, cells isolated from rat Achilles tendon were grown to confluence in culture and allowed to self-assemble into a cylinder between two anchor points. The resulting scaffold-free tissue was composed of aligned, small-diameter collagen fibrils, a large number of cells, and an excess of noncollagenous extracellular matrix; all characteristics of embryonic tendon. The stress-strain response of the constructs also resembles the nonlinear behavior of immature tendons, and the ultimate tensile strength is approximately equal to that of embryonic chick tendon, roughly 2 MPa. These physical and mechanical properties indicate that these constructs are the first viable tendons engineered in vitro, without the aid of artificial scaffolding.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Fibroblastos/fisiologia , Tendões/citologia , Tendões/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Proliferação de Células , Células Cultivadas , Elasticidade , Ratos , Ratos Endogâmicos F344 , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...