Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 13(8): 1949-1967, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908597

RESUMO

Globally, farmers cultivate and maintain crop landraces (i.e., traditional varieties). Landraces contain unique diversity shaped in part by natural and human-mediated selection and are an indispensable resource for farmers. Since environmental conditions change with elevation, crop landraces grown along elevational gradients have provided ideal locations to explore patterns of local adaptation. To further probe traits underlying this differentiation, transcriptome signatures can help provide a foundation for understanding the ways in which functional genetic diversity may be shaped by environment. In this study, we returned to an elevational gradient in Chiapas, Mexico, to assess transcriptional differentiation of genes underlying UV-B protection in locally adapted maize landraces from multiple elevations. We collected and planted landraces from three elevational zones (lowland, approximately 600 m; midland, approximately 1,550 m; highland approximately 2,100 m) in a common garden at 1,531 m. Using RNA-seq data derived from leaf tissue, we performed differential expression analysis between maize from these distinct elevations. Highland and lowland landraces displayed differential expression in phenylpropanoid and flavonoid biosynthesis genes involved in the production of UV-B protectants and did so at a rate greater than expected based on observed background transcriptional differentiation across the genome. These findings provide evidence for the differentiation of suites of genes involved in complex ecologically relevant pathways. Thus, while neutral evolutionary processes may have played a role in the observed patterns of differentiation, UV-B may have also acted as a selective pressure to differentiate maize landraces in the region. Studies of the distribution of functional crop genetic diversity across variable landscapes can aid us in understanding the response of diversity to abiotic/biotic change and, ultimately, may facilitate its conservation and utilization.

2.
BMC Genomics ; 18(1): 707, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886704

RESUMO

BACKGROUND: Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. RESULTS: Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their 'hub' genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several 'hub' transcription factors and kinases as candidates for the regulation of these responses. CONCLUSIONS: These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape. Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic diversity in a time of climate change.


Assuntos
Perfilação da Expressão Gênica , Transcrição Gênica , Zea mays/genética , Mudança Climática , Produtos Agrícolas , Meio Ambiente , Genes de Plantas/genética , Variação Genética , México , Análise de Sequência de RNA
3.
Evol Appl ; 8(5): 510-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26029263

RESUMO

Hybridization produces strong evolutionary forces. In hybrid zones, selection can differentially occur on traits and selection intensities may differ among hybrid generations. Understanding these dynamics in crop-wild hybrid zones can clarify crop-like traits likely to introgress into wild populations and the particular hybrid generations through which introgression proceeds. In a field experiment with four crop-wild hybrid Helianthus annuus (sunflower) cross types, we measured growth and life history traits and performed phenotypic selection analysis on early season traits to ascertain the likelihood, and routes, of crop allele introgression into wild sunflower populations. All cross types overwintered, emerged in the spring, and survived until flowering, indicating no early life history barriers to crop allele introgression. While selection indirectly favored earlier seedling emergence and taller early season seedlings, direct selection only favored greater early season leaf length. Further, there was cross type variation in the intensity of selection operating on leaf length. Thus, introgression of multiple early season crop-like traits, due to direct selection for greater early season leaf length, should not be impeded by any cross type and may proceed at different rates among generations. In sum, alleles underlying early season sunflower crop-like traits are likely to introgress into wild sunflower populations.

4.
PLoS One ; 9(10): e109001, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295859

RESUMO

Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle perspective. Additionally, due to effects of exogenous selection, a given hybrid generation may be especially well-suited to hastening introgression under particular environmental conditions.


Assuntos
Helianthus/fisiologia , Hibridização Genética , Produtos Agrícolas , Fertilidade/fisiologia , Reprodução/fisiologia , Plântula/fisiologia , Sementes/fisiologia
5.
Am J Bot ; 101(7): 1176-1188, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25016007

RESUMO

• Premise of the study: The fitness of an offspring may depend on its nuclear genetic composition (via both parental genotypes) as well as on genetic maternal effects (via only the maternal parent). Understanding the relative importance of these two genetic factors is particularly important for research on crop-wild hybridization, since traits with important genetic maternal effects (e.g., seed size) often differ among crops and their relatives. We hypothesized that the effects of these genetic factors on fitness components would change across the life cycle of hybrids.• Methods: We followed seed, plant size, and reproductive traits in field experiments with wild and four crop-wild hybrids of sunflower (Helianthus annuus), which differed in nuclear genetic composition and maternal parent (wild or F1 hybrid).• Key results: We identified strong genetic maternal effects for early life cycle characteristics, with seeds produced on an F1 mother having premature germination, negligible seed dormancy, and greater seedling size. Increased percentages of crop alleles also increased premature germination and reduced dormancy in seeds produced on a wild mother. For mature plants, nuclear genetic composition dominated: greater percentages of crop alleles reduced height, branching, and fecundity.• Conclusions: Particular backcrosses between hybrids and wilds may differentially facilitate movement of crop alleles into wild populations due to their specific features. For example, backcross seeds produced on wild mothers can persist in the seed bank, illustrating the importance of genetic maternal effects, whereas backcross individuals with either wild or F1 mothers have high fecundity, resulting from their wild-like nuclear genetic composition.

6.
New Phytol ; 182(3): 751-762, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19291006

RESUMO

Multiple evolutionary shifts in floral symmetry and stamen number have occurred in the snapdragon (Antirrhinum majus) family Veronicaceae. In Mohavea, Veronica and Gratiola there have been independent evolutionary reductions in stamen number and modifications to corolla shape. It is hypothesized that changes in the regulation of homologs of snapdragon dorsal flower identity genes CYCLOIDEA (CYC) and RADIALIS (RAD) underlie these floral transitions. CYC-like and RAD-like genes from Veronica montana and Gratiola officinalis were cloned and sequenced, compared with homologs from other Veronicaceae species using phylogenetic analysis, and their expression was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. VmCYC1, GoCYC1, GoCYC2 and RAD-like genes are expressed exclusively in the dorsal region of floral meristems and developing flowers. Their expression patterns do not correlate with patterns of stamen arrest. VmCYC2 and GoCYC3 are expressed in both vegetative and floral tissues, with VmCYC2 being most abundant in all regions of the floral meristem and all petals. These results support conservation of the floral symmetry gene network for Veronicaceae RAD-like and some CYC-like paralogs, suggest regulatory evolution of other CYC-like genes following gene duplication and implicate different genetic mechanisms underlying dorsal versus ventral stamen abortion within Veronica and Gratiola.


Assuntos
Antirrhinum/crescimento & desenvolvimento , Biodiversidade , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Antirrhinum/citologia , Antirrhinum/genética , Antirrhinum/ultraestrutura , Evolução Biológica , Flores/citologia , Flores/ultraestrutura , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hibridização In Situ , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...