Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 15: 653659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248521

RESUMO

Deep neural networks (DNNs) used for brain-computer interface (BCI) classification are commonly expected to learn general features when trained across a variety of contexts, such that these features could be fine-tuned to specific contexts. While some success is found in such an approach, we suggest that this interpretation is limited and an alternative would better leverage the newly (publicly) available massive electroencephalography (EEG) datasets. We consider how to adapt techniques and architectures used for language modeling (LM) that appear capable of ingesting awesome amounts of data toward the development of encephalography modeling with DNNs in the same vein. We specifically adapt an approach effectively used for automatic speech recognition, which similarly (to LMs) uses a self-supervised training objective to learn compressed representations of raw data signals. After adaptation to EEG, we find that a single pre-trained model is capable of modeling completely novel raw EEG sequences recorded with differing hardware, and different subjects performing different tasks. Furthermore, both the internal representations of this model and the entire architecture can be fine-tuned to a variety of downstream BCI and EEG classification tasks, outperforming prior work in more task-specific (sleep stage classification) self-supervision.

2.
J Neural Eng ; 17(5): 056008, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32916675

RESUMO

OBJECTIVE: Most deep neural networks (DNNs) used as brain computer interfaces (BCI) classifiers are rarely viable for more than one person and are relatively shallow compared to the state-of-the-art in the wider machine learning literature. The goal of this work is to frame these as a unified challenge and reconsider how transfer learning is used to overcome these difficulties. APPROACH: We present two variations of a holistic approach to transfer learning with DNNs for BCI that rely on a deeper network called TIDNet. Our approaches use multiple subjects for training in the interest of creating a more universal classifier that is applicable for new (unseen) subjects. The first approach is purely subject-invariant and the second targets specific subjects, without loss of generality. We use five publicly accessible datasets covering a range of tasks and compare our approaches to state-of-the-art alternatives in detail. MAIN RESULTS: We observe that TIDNet in conjunction with our training augmentations is more consistent when compared to shallower baselines, and in some cases exhibits large and significant improvements, for instance motor imagery classification improvements of over 8%. Furthermore, we show that our suggested multi-domain learning (MDL) strategy strongly outperforms simply fine-tuned general models when targeting specific subjects, while remaining more generalizable to still unseen subjects. SIGNIFICANCE: TIDNet in combination with a data alignment-based training augmentation proves to be a consistent classification approach of single raw trials and can be trained even with the inclusion of corrupted trials. Our MDL strategy calls into question the intuition to fine-tune trained classifiers to new subjects, as it proves simpler and more accurate while remaining general. Furthermore, we show evidence that augmented TIDNet training makes better use of additional subjects, showing continued and greater performance improvement over shallower alternatives, indicating promise for a new subject-invariant paradigm rather than a subject-specific one.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Redes Neurais de Computação , Humanos , Aprendizado de Máquina
3.
Sci Rep ; 9(1): 1609, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733596

RESUMO

We consider whether a deep neural network trained with raw MEG data can be used to predict the age of children performing a verb-generation task, a monosyllable speech-elicitation task, and a multi-syllabic speech-elicitation task. Furthermore, we argue that the network makes predictions on the grounds of differences in speech development. Previous work has explored taking 'deep' neural networks (DNNs) designed for, or trained with, images to classify encephalographic recordings with some success, but this does little to acknowledge the structure of these data. Simple neural networks have been used extensively to classify data expressed as features, but require extensive feature engineering and pre-processing. We present novel DNNs trained using raw magnetoencephalography (MEG) and electroencephalography (EEG) recordings that mimic the feature-engineering pipeline. We highlight criteria the networks use, including relative weighting of channels and preferred spectro-temporal characteristics of re-weighted channels. Our data feature 92 subjects aged 4-18, recorded using a 151-channel MEG system. Our proposed model scores over 95% mean cross-validation accuracy distinguishing above and below 10 years of age in single trials of un-seen subjects, and can classify publicly available EEG with state-of-the-art accuracy.


Assuntos
Aprendizado de Máquina , Magnetoencefalografia , Processamento de Sinais Assistido por Computador , Fala/fisiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...