Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aviat Space Environ Med ; 85(4): 407-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24754201

RESUMO

BACKGROUND: Earth-based simulations of physiologic responses to space mission activities are needed to develop prospective countermeasures. To determine whether upright lower body positive pressure (LBPP) provides a suitable space mission simulation, we investigated the cardiovascular responses of normovolemic and hypovolemic men and women to supine and orthostatic stress induced by head-up tilt (HUT) and upright LBPP, representing standing in lunar, Martian, and Earth gravities. METHODS: Six men and six women were tested in normovolemic and hypovolemic (furosemide, intravenous, 0.5 mg x kg(-1)) conditions. Continuous electrocardiogram, blood pressure, segmental bioimpedance, and stroke volume (echocardiography) were recorded supine and at lunar, Martian, and Earth gravities (10 degrees, 20 degrees, and 80 degrees HUT vs. 20%, 40%, and 100% bodyweight upright LBPP), respectively. Cardiovascular responses were assessed from mean values, spectral powers, and spontaneous baroreflex parameters. RESULTS: Hypovolemia reduced plasma volume by approximately 10% and stroke volume by approximately 25% at supine, and increasing orthostatic stress resulted in further reductions. Upright LBPP induced more plasma volume losses at simulated lunar and Martian gravities compared with HUT, while both techniques induced comparable central hypovolemia at each stress. Cardiovascular responses to orthostatic stress were comparable between HUT and upright LBPP in both normovolemic and hypovolemic conditions; however, hypovolemic blood pressure was greater during standing at 100% bodyweight compared to 80 degree HUT due to a greater increase of total peripheral resistance. CONCLUSIONS: The comparable cardiovascular response to HUT and upright LBPP support the use of upright LBPP as a potential model to simulate activity in lunar and Martian gravities.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Gravidade Alterada/efeitos adversos , Hipovolemia/fisiopatologia , Simulação de Ambiente Espacial , Estresse Fisiológico/fisiologia , Adulto , Pressão Sanguínea/fisiologia , Estudos de Casos e Controles , Planeta Terra , Eletrocardiografia , Feminino , Gravitação , Frequência Cardíaca/fisiologia , Humanos , Masculino , Marte , Lua , Postura/fisiologia , Voo Espacial , Volume Sistólico/fisiologia , Resistência Vascular/fisiologia , Adulto Jovem
2.
Aviat Space Environ Med ; 85(4): 414-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24754202

RESUMO

INTRODUCTION: In this study we compare two models [head-up tilt (HUT) vs. body unweighting using lower body positive pressure (LBPP)] to simulate Moon, Mars, and Earth gravities. A literature search did not reveal any comparisons of this type performed previously. We hypothesized that segmental fluid volume shifts (thorax, abdomen, upper and lower leg), cardiac output, and blood pressure (BP), heart rate (HR), and total peripheral resistance to standing would be similar in the LBPP and HUT models. METHODS: There were 21 subjects who were studied while supine (simulation of spaceflight) and standing at 100% (Earth), 40% (Mars), and 20% (Moon) bodyweight produced by LBPP in Alter-G and while supine and tilted at 80 degrees, 20 degrees, and 10 degrees HUT (analogues of Earth, Mars, and Moon gravities, respectively). RESULTS: Compared to supine, fluid shifts from the chest to the abdomen, increases in HR, and decreases in stroke volume were greater at 100% bodyweight than at reduced weights in response to both LBPP and HUT. Differences between the two models were found for systolic BP, diastolic BP, mean arterial BP, stroke volume, total peripheral resistance, and thorax and abdomen impedances, while HR, cardiac output, and upper and lower leg impedances were similar. CONCLUSIONS: Bodyweight unloading via both LBPP and HUT resulted in cardiovascular changes similar to those anticipated in actual reduced gravity environments. The LBPP model/Alter-G has the advantage of providing an environment that allows dynamic activity at reduced bodyweight; however, the significant increase in blood pressures in the Alter-GC may favor the HUT model.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Gravidade Alterada , Simulação de Ambiente Espacial/métodos , Adulto , Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Marte , Modelos Cardiovasculares , Lua , Intolerância Ortostática , Postura/fisiologia , Voo Espacial , Volume Sistólico/fisiologia , Resistência Vascular/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...