Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5546, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956055

RESUMO

C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation and carbon dots synthesis. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.

2.
ACS Nano ; 18(23): 15270-15283, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788214

RESUMO

Lithium fluoride (LiF) is a ubiquitous component in the solid electrolyte interphase (SEI) layer in Li-ion batteries. However, its nanoscale structure, morphology, and topology, important factors for understanding LiF and SEI film functionality, including electrode passivity, are often unknown due to limitations in spatial resolution of common characterization techniques. Ultrabroadband near-field synchrotron infrared nanospectroscopy (SINS) enables such detection and mapping of LiF in SEI layers in the far-infrared region down to ca. 322 cm-1 with a nanoscale spatial resolution of ca. 20 nm. The surface sensitivity of SINS and the large infrared absorption cross section of LiF, which can support local surface phonons under certain circumstances, enabled characterization of model LiF samples of varying structure, thickness, surface roughness, and degree of crystallinity, as confirmed by atomic force microscopy, attenuated total reflectance FTIR, SINS, X-ray photoelectron spectroscopy, high-angle annular dark-field, and scanning transmission electron microscopy. Enabled by this approach, LiF within SEI films formed on Cu, Si, and metallic glass Si40Al50Fe10 electrodes was detected and characterized. The nanoscale morphologies and topologies of LiF in these SEI layers were evaluated to gain insights into LiF nucleation, growth, and the resulting nuances in the electrode surface passivity.

3.
Res Sq ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260621

RESUMO

C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.

5.
ACS Nano ; 17(7): 6943-6954, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972420

RESUMO

The solid electrolyte interphase (SEI) on a Si negative electrode in carbonate-based organic electrolytes shows intrinsically poor passivating behavior, giving rise to unsatisfactory calendar life of Li-ion batteries. Moreover, mechanical strains induced in the SEI due to large volume changes of Si during charge-discharge cycling could contribute to its mechanical instability and poor passivating behavior. This study elucidates the influence that static mechanical deformation of the SEI has on the rate of unwanted parasitic reactions at the Si/electrolyte interface as a function of electrode potential. The experimental approach involves the utilization of Si thin-film electrodes on substrates with disparate elastic moduli, which either permit or suppress the SEI deformation in response to Si volume changes upon charging-discharging. We find that static mechanical stretching and deformation of the SEI results in an increased parasitic electrolyte reduction current on Si. Furthermore, attenuated total reflection and near-field Fourier-transform infrared nanospectroscopy reveal that the static mechanical stretching and deformation of the SEI fosters a selective transport of linear carbonate solvent through, and nanoconfinement within, the SEI. These, in turn, promote selective solvent reduction and continuous electrolyte decomposition on Si electrodes, reducing the calendar life of Si anode-based Li-ion batteries. Finally, possible correlations between the structure and chemical composition of the SEI layer and its mechanical and chemical resilience under prolonged mechanical deformation are discussed in detail.

6.
ACS Appl Mater Interfaces ; 15(5): 6755-6767, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696964

RESUMO

Si anodes for Li-ion batteries are notorious for their large volume expansion during lithiation and the corresponding detrimental effects on cycle life. However, calendar life is the primary roadblock for widespread adoption. During calendar life aging, the main origin of impedance increase and capacity fade is attributed to the instability of the solid electrolyte interphase (SEI). In this work, we use ex situ nano-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy to characterize the structure and composition of the SEI layer on amorphous Si thin films after an accelerated calendar aging protocol. The characterization of the SEI on non-washed and washed electrodes shows that brief washing in dimethyl carbonate results in large changes to the film chemistry and topography. Detailed examination of the non-washed electrodes during the first lithiation and after an accelerated calendar aging protocol reveals that PF6- and its decomposition products tend to accumulate in the SEI due to the preferential transport of PF6- ions through polyethylene oxide-like species in the organic part of the SEI layer. This work demonstrates the importance of evaluating the SEI layer in its intrinsic, undisturbed form and new strategies to improve the passivation of the SEI layer are proposed.

7.
Nat Commun ; 13(1): 1398, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301308

RESUMO

Solid-state batteries possess the potential to significantly impact energy storage industries by enabling diverse benefits, such as increased safety and energy density. However, challenges persist with physicochemical properties and processes at electrode/electrolyte interfaces. Thus, there is great need to characterize such interfaces in situ, and unveil scientific understanding that catalyzes engineering solutions. To address this, we conduct multiscale in situ microscopies (optical, atomic force, and infrared near-field) and Fourier transform infrared spectroscopies (near-field nanospectroscopy and attenuated total reflection) of intact and electrochemically operational graphene/solid polymer electrolyte interfaces. We find nanoscale structural and chemical heterogeneities intrinsic to the solid polymer electrolyte initiate a cascade of additional interfacial nanoscale heterogeneities during Li plating and stripping; including Li-ion conductivity, electrolyte decomposition, and interphase formation. Moreover, our methodology to nondestructively characterize buried interfaces and interphases in their native environment with nanoscale resolution is readily adaptable to a number of other electrochemical systems and battery chemistries.

8.
ACS Appl Mater Interfaces ; 14(2): 2431-2439, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985860

RESUMO

The Langmuir-Blodgett (LB) technique, in which monolayers are commonly transferred from a liquid/gas interface to a solid surface, allows convenient fabrication of highly ordered thin films with molecular-level precision. This method is widely applicable to substances ranging from organic molecules to nanomaterials. Therefore, LB methods have provided a critical toolbox for researchers to engineer nanoarchitectures. The LB fabrication process is also compatible with numerous substrate materials over large areas, which is advantageous for practical application. Despite its wide applicability, the LB strategy has not been extensively employed in battery studies. The versatility of LB film, along with the accumulated knowledge associated with this technique, makes it a promising platform for promoting battery chemistry evolution. This Review summarizes recent advances of LB methods for high-performance battery development, including preparation of electrode materials, fabrication of functional layers, and battery diagnosis and thus illustrates the high utility of LB approaches in battery research.

9.
Environ Sci Technol ; 55(5): 3260-3269, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596649

RESUMO

Growing global water demand has brought desalination technologies to the forefront for freshwater production from nontraditional water sources. Among these, forward osmosis (FO) is a promising two-step desalination process (draw dilution and regeneration), but it is often overlooked due to the energy requirements associated with draw regeneration. To address this limiting factor, we demonstrate FO desalination using thermally responsive ionic liquids (ILs) that are regenerated using a renewable energy input, that is, solar heat. To efficiently harness sunlight, a simple photonic heater converts incoming irradiation into infrared wavelengths that are directly absorbed by IL-water mixtures, thereby inducing phase separation to yield clean water. This approach is markedly different as it uses radiative heating, a noncontact mode of heat transfer that couples to chemical functional groups within the IL for rapid energy transfer without a heat exchanger or secondary fluid. Overall, a solar-thermal separation efficiency of 50% is achieved under unconcentrated sunlight, which can be increased to 69% with the thermal design. Successful desalination of produced water from oil wells in Southern California highlights the potential of solar-powered IL-FO for energy-efficient and low-cost desalination of complex brines for beneficial water reuse.


Assuntos
Líquidos Iônicos , Purificação da Água , Osmose , Luz Solar , Água
10.
Anal Chim Acta ; 1129: 24-30, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32891387

RESUMO

Calcium fluoride formed by the reaction between ammonium bifluoride and calcium chloride was investigated as a dominating matrix for quantitative analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Transformation from a solid sample to the calcium fluoride-based matrix permitted quantitative analysis based on calibration standards made from elemental standards. A low abundance stable calcium isotope, i.e. 44Ca+, was monitored as the internal standard for quantitative analysis by LA-ICP-MS. Correlation coefficient factors for multiple elements were obtained with values over 0.999. The results for multiple elements in a certified reference material of soil (NIST SRM 2710a) agreed with the certified values in the range of expanded uncertainty, indicating the present method was valid for quantitation of elements in solid samples.

11.
Nature ; 585(7823): 63-67, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879503

RESUMO

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1-3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 charge-discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.

12.
ACS Appl Mater Interfaces ; 12(36): 40879-40890, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805823

RESUMO

This work focuses on the mechanisms of interfacial processes at the surface of amorphous silicon thin-film electrodes in organic carbonate electrolytes to unveil the origins of the inherent nonpassivating behavior of silicon anodes in Li-ion batteries. Attenuated total reflection Fourier-transform infrared spectroscopy, X-ray absorption spectroscopy, and infrared near-field scanning optical microscopy were used to investigate the formation, evolution, and chemical composition of the surface layer formed on Si upon cycling. We found that the chemical composition and thickness of the solid/electrolyte interphase (SEI) layer continuously change during the charging/discharging cycles. This SEI layer "breathing" effect is directly related to the formation of lithium ethylene dicarbonate (LiEDC) and LiPF6 salt decomposition products during silicon lithiation and their subsequent disappearance upon delithiation. The detected appearance and disappearance of LiEDC and LiPF6 decomposition compounds in the SEI layer are directly linked with the observed interfacial instability and poor passivating behavior of the silicon anode.

13.
Nat Commun ; 11(1): 3947, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769977

RESUMO

Herein, we present a scalable approach for the synthesis of a hydrogen-bonded organic-inorganic framework via coordination-driven supramolecular chemistry, for efficient remediation of trace heavy metal ions from water. In particular, using copper as our model ion of interest and inspired by nature's use of histidine residues within the active sites of various copper binding proteins, we design a framework featuring pendant imidazole rings and copper-chelating salicylaldoxime, known as zinc imidazole salicylaldoxime supramolecule. This material is water-stable and exhibits unprecedented adsorption kinetics, up to 50 times faster than state-of-the-art materials for selective copper ion capture from water. Furthermore, selective copper removal is achieved using this material in a pH range that was proven ineffective with previously reported metal-organic frameworks. Molecular dynamics simulations show that this supramolecule can reversibly breathe water through lattice expansion and contraction, and that water is initially transported into the lattice through hopping between hydrogen-bond sites.

14.
Chem Commun (Camb) ; 56(69): 9970-9973, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32852004

RESUMO

Electrochemically deposited copper nanostructures were coated with silver to create a plasmonically active cathode for carbon dioxide (CO2) reduction. Illumination with 365 nm light, close to the peak plasmon resonance of silver, selectively enhanced 5 of the 14 typically observed copper CO2 reduction products while simultaneously suppressing hydrogen evolution. At low overpotentials, carbon monoxide was promoted in the light and at high overpotentials ethylene, methane, formate, and allyl alcohol were enhanced upon illumination; generally C1 products and C2/C3 products containing a double carbon bond were selectively promoted under illumination. Temperature-dependent product analysis in the dark showed that local heating is not the cause of these selectivity changes. While the exact plasmonic mechanism is still unknown, these results demonstrate the potential for enhancing CO2 reduction selectivity at copper electrodes using plasmonics.

15.
ACS Nano ; 14(8): 9545-9561, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658458

RESUMO

Conversion-type transition-metal phosphide anode materials with high theoretical capacity usually suffer from low-rate capability and severe capacity decay, which are mainly caused by their inferior electronic conductivities and large volumetric variations together with the poor reversibility of discharge product (Li3P), impeding their practical applications. Herein, guided by density functional theory calculations, these obstacles are simultaneously mitigated by confining amorphous FeP nanoparticles into ultrathin 3D interconnected P-doped porous carbon nanosheets (denoted as FeP@CNs) via a facile approach, forming an intriguing 3D flake-CNs-like configuration. As an anode for lithium-ion batteries (LIBs), the resulting FeP@CNs electrode not only reaches a high reversible capacity (837 mA h g-1 after 300 cycles at 0.2 A g-1) and an exceptional rate capability (403 mA h g-1 at 16 A g-1) but also exhibits extraordinary durability (2500 cycles, 563 mA h g-1 at 4 A g-1, 98% capacity retention). By combining DFT calculations, in situ transmission electron microscopy, and a suite of ex situ microscopic and spectroscopic techniques, we show that the superior performances of FeP@CNs anode originate from its prominent structural and compositional merits, which render fast electron/ion-transport kinetics and abundant active sites (amorphous FeP nanoparticles and structural defects in P-doped CNs) for charge storage, promote the reversibility of conversion reactions, and buffer the volume variations while preventing pulverization/aggregation of FeP during cycling, thus enabling a high rate and highly durable lithium storage. Furthermore, a full cell composed of the prelithiated FeP@CNs anode and commercial LiFePO4 cathode exhibits impressive rate performance while maintaining superior cycling stability. This work fundamentally and experimentally presents a facile and effective structural engineering strategy for markedly improving the performance of conversion-type anodes for advanced LIBs.

16.
J Am Chem Soc ; 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32469508

RESUMO

Illumination of a voltage-biased plasmonic Ag cathode during CO2 reduction results in a suppression of the H2 evolution reaction while enhancing CO2 reduction. This effect has been shown to be photonic rather than thermal, but the exact plasmonic mechanism is unknown. Here, we conduct an in situ ATR-SEIRAS (attenuated total reflectance-surface-enhanced infrared absorption spectroscopy) study of a sputtered thin film Ag cathode on a Ge ATR crystal in CO2-saturated 0.1 M KHCO3 over a range of potentials under both dark and illuminated (365 nm, 125 mW cm-2) conditions to elucidate the nature of this plasmonic enhancement. We find that the onset potential of CO2 reduction to adsorbed CO on the Ag surface is -0.25 VRHE and is identical in the light and the dark. As the production of gaseous CO is detected in the light near this onset potential but is not observed in the dark until -0.5 VRHE, we conclude that the light must be assisting the desorption of CO from the surface. Furthermore, the HCO3- wavenumber and peak area increase immediately upon illumination, precluding a thermal effect. We propose that the enhanced local electric field that results from the localized surface plasmon resonance (LSPR) is strengthening the HCO3- bond, further increasing the local pH. This would account for the decrease in H2 formation and increase the CO2 reduction products in the light.

17.
iScience ; 23(3): 100911, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32113155

RESUMO

In this perspective we compare plasmon-enhanced electrochemical conversion (PEEC) with photoelectrochemistry (PEC). PEEC is the oxidation or reduction of a reactant at the illuminated surface of a plasmonic metal (or other conductive material) while a potential bias is applied. PEC uses solar light to generate photoexcited electron-hole pairs to drive an electrochemical reaction at a biased or unbiased semiconductor photoelectrode. The mechanism of photoexcitation of charge carriers is different between PEEC and PEC. Here we explore how this difference affects the response of PEEC and PEC systems to changes in light, temperature, and surface morphology of the photoelectrode.

18.
ACS Appl Mater Interfaces ; 11(47): 44090-44100, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31648518

RESUMO

Silicon anodes have a high theoretical capacity for lithium storage, but current composite electrode formulations are not sufficiently stable under long-term electrochemical cycling. The choice of polymeric binder has been shown to impact stability and capacity of silicon anodes for electrochemical energy storage. While several promising polymeric binders have been identified, there is a knowledge gap in how various physicochemical properties-including adhesion, mechanical integrity, and ion diffusion-impact electrochemical stability and performance. In this work, we comprehensively investigate the physical properties and performance of a molecular-weight series (3-20 × 106 g/mol) of partially hydrolyzed polyacrylamide (HPAM) in silicon anodes. We quantify the mechanical strength, electrolyte uptake, adhesion to silicon, copper, and carbon, as well as electrochemical performance and stability and find that HPAM satisfies many of the properties generally believed to be favorable, including good adhesion, high strength, and electrochemical stability. HPAM does not show any electrolyte uptake regardless of any molecular weight studied, and thin films of mid- and high-molecular-weight HPAM on silicon surfaces suppress lithiation of silicon. The resulting composite electrodes exhibit an electrochemical storage capacity greater than 3000 mAh/g initially and 1639 mAh/g after 100 cycles. We attribute capacity fade to failure of mechanical properties of the binder or an excess of the solid electrolyte interphase layer being formed at the Si surface. While the highest-molecular-weight sample was expected to perform the best given its stronger adhesion and bulk mechanical properties, we found that HPAM of moderate molecular weight performed the best. We attribute this to a trade-off in mechanical strength and uniformity of the resulting electrode. This work demonstrates promising performance of a low-cost polymer as a binder for Si anodes and provides insight into the physical and chemical properties that influence binder performance.

19.
Phys Chem Chem Phys ; 21(43): 23833-23842, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31538641

RESUMO

Fluorescent species are formed during cycling of lithium ion batteries as a result of electrolyte decomposition due to the instability of the non-aqueous electrolytes and side reactions that occur at the electrode surface. The increase in the background fluorescence due to the presence of these components makes it harder to analyse data due to the spectroscopic overlap of Raman scattering and fluorescence. Herein, Kerr gated Raman spectroscopy was shown to be an effective technique for the isolation of the scattering effect from the fluorescence enabling the collection of the Raman spectra of LiPF6 salt and LiPF6-based organic carbonate electrolyte, without the interference of the fluorescence component. Kerr gated Raman was able to identify POF3 on the LiPF6 particle surface, after the addition of trace water.

20.
ACS Omega ; 4(2): 4296-4303, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459634

RESUMO

Forward osmosis (FO) has emerged as a new technology for desalination and exhibits potentials for applications where reverse osmosis is incapable or uneconomical for treating streams with high salinity or fouling propensity. However, most of current draw agents in FO are salts and difficult to be recycled cost- and energy-effectively. In this work, we demonstrate a new and facile approach to efficiently recover water from the FO process with enhanced water purity by using a binary ion liquid/hydrogel system. The hybrid ion liquid/hydrogel draw solution system demonstrated in this work synergistically leverages the thermoresponsive properties of both the ionic liquid (IL) and hydrogel to improve the overall FO performance. Our findings corroborate that the hydrogel mitigates the water flux decline of the IL as the draw agent and provide a ready route to contiguously and effectively regenerate water from the FO process. Such a route allows for an efficient recovery of water from the draw solute/water mixture with enhanced water purity, compared with conventional thermal treating of lower critical solution temperature IL draw solute/water. Furthermore, hydrogels can be used in a continuous and readily recyclable process to recover water without heating the entire draw solute/water mixture. Our design principles open the door to use low-grade/waste heat or solar energy to regenerate draw agents and potentially reduce energy in the FO process considerably.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...