Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180237

RESUMO

Creation of artificial forest plantations on a global scale is one of the ways to mitigate the negative effects of climate change on ecosystems, at the same time providing soil protection from erosion, regulation of the hydrological regime and carbon sequestration in soils of different natural and climatic zones. However, the change of the dominant plant community cause significant ecosystem changes, reflecting at the structure and functioning of the soil microbial complex as well. The shifts in prokaryotic community of the meadow soil resulting from the conversion of the native meadow (further grassland) phytocenosis to the artificial forest plantations was investigated with the use of NGS sequencing technology and metabarcoding approach-amplicon sequencing of V4 region of 16 S rRNA (performed on Illumina Miseq platform). The identified shifts in taxonomic structure and diversity may be the result of changes in the physic-chemical conditions of soils and, on the other hand, may serve as indicators of such changes. Cultivation of larch led to an increase in the diversity of the prokaryotic community and its stratification by depth. The acidifying effect of larch manifested itself in an increase in the proportion and diversity of acidobacteria, in the abundance of oligotrophic microorganisms of phyla Chloroflexi, Firmicutes, and a simultaneous comparative decrease in the bacteria of Verrucomicrobia phylum, alphaproteobacteria of or. Rhizobiales and Burkholderiales. The absence of clearly expressed dominants in the prokaryotic community, as well as a significant increase in alpha-diversity indices, compared with the control plot of native mountain-meadow soil under grassland vegetation, suggests a transitional nature of the soil ecosystem of artificial forest plantations.


Assuntos
Bactérias/classificação , Bactérias/genética , Florestas , Pradaria , Larix/crescimento & desenvolvimento , Microbiologia do Solo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , RNA Ribossômico 16S/genética , Solo/química
2.
PeerJ ; 9: e10871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643711

RESUMO

Rendzic Leptosols are intrazonal soils formed on limestone bedrock. The specialty of these soils is that parent rock material is more influential in shaping soil characteristics than zonal factors such as climate, especially during soil formation. Unlike fast evolving Podzols due to their leaching regime, Leptosols do not undergo rapid development due to the nature of the limestone. Little is known how microbiome reflects this process, so we assessed microbiome composition of Rendzic Leptosols of different ages, arising from disruption and subsequent reclamation. The mountains and foothills that cover much of the Crimean Peninsula are ideal for this type of study, as the soils were formed on limestone and have been subjected to anthropogenic impacts through much of human history. Microbiomes of four soil sites forming a chronosequence, including different soil horizons, were studied using sequencing of 16S rRNA gene libraries and quantitative PCR. Dominant phyla for all soil sites were Actinobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, Thaumarchaeota, Planctomycetes, Verrucomicrobia and Firmicutes. Alpha diversity was similar across sites and tended to be higher in topsoil. Beta diversity showed that microbiomes diverged according to the soil site and the soil horizon. The oldest and the youngest soils had the most similar microbiomes, which could have been caused by their geographic proximity. Oligotrophic bacteria from Chitinophagaceae, Blastocatellaceae and Rubrobacteriaceae dominated the microbiome of these soils. The microbiome of 700-year old soil was the most diverse. This soil was from the only study location with topsoil formed by plant litter, which provided additional nutrients and could have been the driving force of this differentiation. Consistent with this assumption, this soil was abundant in copiotrophic bacteria from Proteobacteria and Actinobacteria phyla. The microbiome of 50-year old Leptosol was more similar to the microbiome of benchmark soil than the microbiome of 700-year old soil, especially by weighted metrics. CCA analysis, in combination with PERMANOVA, linked differences in microbiomes to the joint change of all soil chemical parameters between soil horizons. Local factors, such as parent material and plant litter, more strongly influenced the microbiome composition in Rendzic Leptosols than soil age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...