Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 37(26): 3435-3442, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31085001

RESUMO

Foot and Mouth Disease is a highly contagious and economically important disease of livestock. While vaccination is often effective at controlling viral spread, failures can occur due to strain mismatch or viral mutation. Foot and Mouth Disease Virus (FMDV) possesses a hypervariable region within the G-H Loop of VP1, a capsid protein commonly associated with virus neutralization. Here, we investigate the effect of replacement of the G-H loop hypervariable epitope with a xenoepitope from PRRS virus on the immunogenicity and efficacy of an adenovirus vectored FMDV vaccine (Ad5-FMD). Pigs were vaccinated with Ad5-FMD, the modified Ad5-FMDxeno, or PBS, followed by intradermal challenge with FDMV strain O1 Manisa at 21 days post-vaccination. While overall serum antibody titers were significantly higher in Ad5-FMDxeno vaccinated animals, neutralizing antibody titers were decreased in pigs that received Ad5-FMDxeno, when compared to those vaccinated with Ad5-FMD, prior to viral challenge, indicative of immune redirection away from VP1 towards non-neutralizing epitopes. As expected, animals vaccinated with unmodified Ad5-FMD were protected from lesions, fever, and viremia. In contrast, animals vaccinated with Ad5-FMDxeno developed clinical signs and viremia, but at lower levels than that observed in PBS-treated controls. No significant difference was found in nasal shedding of virions between the two Ad5-FMD vaccinated groups. This data suggests that the hypervariable epitope of the VP1 G-H loop contributes to protective immunity conferred by Ad5 vector-delivered FMD vaccines in swine, and cannot be substituted without a loss of immunogenicity.


Assuntos
Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Suínos/imunologia , Adenoviridae/imunologia , Infecções por Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Vetores Genéticos/imunologia , Células HEK293 , Humanos , Imunização/métodos , Vacinação/métodos , Vacinas Virais/imunologia
2.
Virology ; 502: 123-132, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28039799

RESUMO

A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 107 pfu/animal while a dose of 4×107pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine.


Assuntos
Infecções por Adenoviridae/veterinária , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/virologia , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinação , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
3.
J Virol ; 90(3): 1298-310, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581977

RESUMO

UNLABELLED: Codon bias deoptimization has been previously used to successfully attenuate human pathogens, including poliovirus, respiratory syncytial virus, and influenza virus. We have applied a similar technology to deoptimize the capsid-coding region (P1) of foot-and-mouth disease virus (FMDV). Despite the introduction of 489 nucleotide changes (19%), synonymous deoptimization of the P1 region rendered a viable FMDV progeny. The resulting strain was stable and reached cell culture titers similar to those obtained for wild-type (WT) virus, but at reduced specific infectivity. Studies in mice showed that 100% of animals inoculated with the FMDV A12 P1 deoptimized mutant (A12-P1 deopt) survived, even when the animals were infected at doses 100 times higher than the dose required to cause death by WT virus. All mice inoculated with the A12-P1 deopt mutant developed a strong antibody response and were protected against subsequent lethal challenge with WT virus at 21 days postinoculation. Remarkably, the vaccine safety margin was at least 1,000-fold higher for A12-P1 deopt than for WT virus. Similar patterns of attenuation were observed in swine, in which animals inoculated with A12-P1 deopt virus did not develop clinical disease until doses reached 1,000 to 10,000 times the dose required to cause severe disease in 2 days with WT A12. Consistently, high levels of antibody titers were induced, even at the lowest dose tested. These results highlight the potential use of synonymous codon pair deoptimization as a strategy to safely attenuate FMDV and further develop live attenuated vaccine candidates to control such a feared livestock disease. IMPORTANCE: Foot-and-mouth disease (FMD) is one of the most feared viral diseases that can affect livestock. Although this disease appeared to be contained in developed nations by the end of the last century, recent outbreaks in Europe, Japan, Taiwan, South Korea, etc., have demonstrated that infection can spread rapidly, causing devastating economic and social consequences. The Global Foot-and-Mouth Disease Research Alliance (GFRA), an international organization launched in 2003, has set as part of their five main goals the development of next-generation control measures and strategies, including improved vaccines and biotherapeutics. Our work demonstrates that newly developed codon pair bias deoptimization technologies can be applied to FMD virus to obtain attenuated strains with potential for further development as novel live attenuated vaccine candidates that may rapidly control disease without reverting to virulence.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Febre Aftosa/crescimento & desenvolvimento , Vírus da Febre Aftosa/imunologia , Mutação Silenciosa , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Animais , Feminino , Vírus da Febre Aftosa/genética , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Suínos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas Virais/genética , Virulência
4.
Virology ; 413(2): 283-92, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21435672

RESUMO

Foot-and-mouth disease (FMD) is one of the most serious threats to the livestock industry. Despite the availability of a vaccine, recent outbreaks in disease-free countries have demonstrated that development of novel FMD control strategies is imperative. Here we report the identification and characterization of bovine (bo) interferon lambda 3 (IFN-λ3), a member of the type III IFN family. Expression of boIFN-λ3 using a replication-defective human adenovirus type 5 vector (Ad5-boIFN-λ3) yielded a glycosylated secreted protein with antiviral activity against FMD virus (FMDV) and vesicular stomatitis virus in bovine cell culture. Inoculation of cattle with Ad5-boIFN-λ3 induced systemic antiviral activity and up-regulation of IFN stimulated gene expression in multiple tissues susceptible to FMDV infection. Our results demonstrate that the type III IFN family is conserved in bovines and boIFN-λ3 has potential for further development as a biotherapeutic candidate to inhibit FMDV or other viruses in cattle.


Assuntos
Antivirais/farmacologia , Vírus da Febre Aftosa/efeitos dos fármacos , Interferons/farmacologia , Adenovírus Humanos/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Sequência de Bases , Bovinos , Linhagem Celular , Clonagem Molecular , Regulação da Expressão Gênica , Terapia Genética , Humanos , Interferons/genética , Interferons/metabolismo , Masculino , Dados de Sequência Molecular
5.
J Virol ; 83(4): 1800-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19052079

RESUMO

The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) is involved in antagonizing the innate immune response by blocking the expression of interferon (IFN) and by reducing the immediate-early induction of IFN-beta mRNA and IFN-stimulated genes. In addition to its role in shutting off cap-dependent host mRNA translation, L(pro) is associated with the degradation of the p65/RelA subunit of nuclear factor kappaB (NF-kappaB). Bioinformatics analysis suggests that L(pro) contains a SAP (for SAF-A/B, Acinus, and PIAS) domain, a protein structure associated in some cases with the nuclear retention of molecules involved in transcriptional control. We have introduced a single or a double mutation in conserved amino acid residues contained within this domain of L(pro). Although three stable mutant viruses were obtained, only the double mutant displayed an attenuated phenotype in cell culture. Indirect immunofluorescence analysis showed that L(pro) subcellular distribution is altered in cells infected with the double mutant virus. Interestingly, nuclear p65/RelA staining disappeared from wild-type (WT) FMDV-infected cells but not from double mutant virus-infected cells. Consistent with these results, NF-kappaB-dependent transcription was not inhibited in cells infected with double mutant virus in contrast to cells infected with WT virus. However, degradation of the translation initiation factor eIF-4G was very similar for both the WT and the double mutant viruses. Since L(pro) catalytic activity was demonstrated to be a requirement for p65/RelA degradation, our results indicate that mutation of the SAP domain reveals a novel separation-of-function activity for FMDV L(pro).


Assuntos
Endopeptidases/metabolismo , Vírus da Febre Aftosa/fisiologia , Replicação Viral , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular , Células Cultivadas , Sequência Conservada , Endopeptidases/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , NF-kappa B/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Suínos , Fator de Transcrição RelA/metabolismo , Ensaio de Placa Viral
6.
Vaccine ; 26(45): 5689-99, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18762225

RESUMO

To develop a more efficacious human adenovirus (Ad5)-vectored foot-and-mouth disease virus (FMDV) subunit vaccine (Ad5-A24) we have included coding regions for FMDV nonstructural proteins 2B and 2C. These proteins are involved in membrane re-arrangements resulting in the proliferation of cytoplasmic vesicles which serve as the sites of virus replication. Cells infected with a vector containing full-length 2B (Ad5-CI-A24-2B) had a significant increase in the number of cytoplasmic vesicles as compared to cells infected with the original vector or a vector containing full-length 2BC. Swine inoculated with Ad5-CI-A24-2B developed an enhanced FMDV-specific neutralizing antibody response as compared to animals inoculated with the original vector and showed no clinical signs of disease after challenge. In a second experiment animals vaccinated with Ad5-CI-A24-2B were not fully protected but had a more rapid and robust humoral response and two out of three pigs had delayed and less severe disease than animals in the other vaccinated groups. These results suggest that incorporation of the complete coding region of 2B into the vaccine enhances its potency and protective efficacy.


Assuntos
Adenovírus Humanos/genética , Cisteína Endopeptidases/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Capsídeo/imunologia , Linhagem Celular , Cisteína Endopeptidases/administração & dosagem , Cisteína Endopeptidases/genética , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vetores Genéticos , Humanos , Testes de Neutralização , Recombinação Genética , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Resultado do Tratamento , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
7.
J Virol ; 81(13): 7124-35, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17459931

RESUMO

Previously, we showed that type I interferon (alpha/beta interferon [IFN-alpha/beta]) can inhibit foot-and-mouth disease virus (FMDV) replication in cell culture, and swine inoculated with 10(9) PFU of human adenovirus type 5 expressing porcine IFN-alpha (Ad5-pIFN-alpha) were protected when challenged 1 day later. In this study, we found that type II pIFN (pIFN-gamma) also has antiviral activity against FMDV in cell culture and that, in combination with pIFN-alpha, it has a synergistic antiviral effect. We also observed that while each IFN alone induced a number of IFN-stimulated genes (ISGs), the combination resulted in a synergistic induction of some ISGs. To extend these studies to susceptible animals, we inoculated groups of swine with a control Ad5, 10(8) PFU of Ad5-pIFN-alpha, low- or high-dose Ad5-pIFN-gamma, or a combination of Ad5-pIFN-alpha and low- or high-dose Ad5-pIFN-gamma and challenged all groups with FMDV 1 day later. The control group and the groups inoculated with either Ad5-pIFN-alpha or a low dose of Ad5-pIFN-gamma developed clinical disease and viremia. However, the group that received the combination of both Ad5-IFNs with the low dose of Ad5-pIFN-gamma was completely protected from challenge and had no viremia. Similarly the groups inoculated with the combination of Ad5s with the higher dose of Ad5-pIFN-gamma or with only high-dose Ad5-pIFN-gamma were protected. The protected animals did not develop antibodies against viral nonstructural (NS) proteins, while all infected animals were NS protein seropositive. No antiviral activity or significant levels of IFNs were detected in the protected groups, but there was an induction of some ISGs. The results indicate that the combination of type I and II IFNs act synergistically to inhibit FMDV replication in vitro and in vivo.


Assuntos
Antivirais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Interferon-alfa/imunologia , Interferon gama/imunologia , Replicação Viral/imunologia , Adenoviridae , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Cricetinae , Febre Aftosa/imunologia , Regulação da Expressão Gênica/imunologia , Terapia Genética , Humanos , Interferon-alfa/agonistas , Interferon-alfa/genética , Interferon gama/agonistas , Interferon gama/genética , Ovinos , Suínos , Proteínas não Estruturais Virais/imunologia
8.
Vaccine ; 24(17): 3446-56, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16522345

RESUMO

The adjuvant effect of porcine interferon alpha (pIFN-alpha) was examined in swine vaccinated with a replication-defective adenovirus containing foot-and-mouth disease virus (FMDV) A24 capsid and 3C proteinase coding regions (Ad5-A24). Groups of swine were inoculated with either high or low doses of Ad5-A24 in the presence or absence of Ad5-pIFNalpha or with a control Ad5 and challenged by intradermal inoculation in the heel bulb with FMDV at 42 days post-vaccination. After challenge all control animals developed viremia and lesions. Animals receiving low-dose Ad5-A24 had similar clinical disease, but only three of five animals developed viremia, while addition of IFN resulted in a delayed onset of lesions in three animals and only one animal had detectable viremia. Animals vaccinated with high-dose Ad5-A24 had no viremia, significantly fewer lesions and delayed onset of disease compared to the control and low-dose vaccine groups. Four of five pigs vaccinated with high-dose Ad5-A24 plus IFN were completely protected from disease and only one animal had a lesion which was restricted to the site of challenge. Thus, pIFN-alpha enhances the long-term level of protection induced by the Ad5-FMD vaccine, supporting its use as a potential adjuvant in FMD vaccination strategies.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vírus da Febre Aftosa/imunologia , Interferon-alfa/farmacologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Suínos , Vacinação , Proteínas não Estruturais Virais/imunologia
9.
J Interferon Cytokine Res ; 23(7): 359-68, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14511462

RESUMO

Foot-and-mouth disease (FMD) is an economically important disease of livestock. Eliminating FMD outbreaks in previously disease-free countries often relies on restriction of animal movement and massive slaughter of infected and in-contact susceptible animals. To develop a more effective and humane FMD control strategy, we explored the possibility of using type I interferon (IFN-alpha/beta) as a novel anti-FMD agent. We have demonstrated previously that swine inoculated with replication-defective human adenovirus type 5 (Ad5) vector expressing porcine IFN-alpha (Ad5-PoIFN-alpha) were completely protected from FMD virus (FMDV) challenge. To extend this approach to bovines, we constructed Ad5 vectors that express bovine IFN-alpha or IFN-beta (Ad5-BoIFN-alpha and Ad5-BoIFN-beta). Cells infected with these viruses produced high levels of biologically active BoIFN-alpha/beta, but despite expression in vitro, no detectable IFN-induced biologic activity was found in cattle inoculated with Ad5-BoIFN-alpha. Because PoIFN-alpha inhibits FMDV replication in bovine cells, we evaluated the potential use of PoIFN-alpha against FMD in cattle. In cattle inoculated with Ad5-PoIFN-alpha, the appearance of vesicles was delayed after challenge with FMDV and disease was less severe than in control animals. One Ad5-PoIFN-alpha-inoculated animal never developed clinical disease. Similarly, although all the Ad5-PoIFN-alpha-inoculated animals developed viremia, it was delayed for 1 day as compared with the control group. These results suggest that in vivo expression of PoIFN-alpha partially protected cattle from FMD.


Assuntos
Adenoviridae/genética , Vírus da Febre Aftosa/genética , Febre Aftosa/prevenção & controle , Interferon Tipo I/fisiologia , Vacinas , Infecções por Adenoviridae , Animais , Bovinos , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Humanos , Interferon Tipo I/genética , Testes de Precipitina , Regiões Promotoras Genéticas , Suínos , Fatores de Tempo
10.
J Virol ; 77(2): 1621-5, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12502879

RESUMO

We have previously shown that replication of foot-and-mouth disease virus (FMDV) is highly sensitive to alpha/beta interferon (IFN-alpha/beta). In the present study, we constructed recombinant, replication-defective human adenovirus type 5 vectors containing either porcine IFN-alpha or IFN-beta (Ad5-pIFNalpha or Ad5-pIFNbeta). We demonstrated that cells infected with these viruses express high levels of biologically active IFN. Swine inoculated with 10(9) PFU of a control Ad5 virus lacking the IFN gene and challenged 24 h later with FMDV developed typical signs of foot-and-mouth disease (FMD), including fever, vesicular lesions, and viremia. In contrast, swine inoculated with 10(9) PFU of Ad5-pIFNalpha were completely protected when challenged 24 h later with FMDV. These animals showed no clinical signs of FMD and no viremia and did not develop antibodies against viral nonstructural proteins, suggesting that complete protection from infection was achieved.


Assuntos
Adenoviridae/genética , Febre Aftosa/prevenção & controle , Interferon Tipo I/administração & dosagem , Doenças dos Suínos/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Células Cultivadas , Febre Aftosa/imunologia , Vetores Genéticos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Suínos , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...