Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3545, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322084

RESUMO

Because runoff production is more efficient over wetter soils, and because soil moisture has an intrinsic memory, soil moisture information can potentially contribute to the accuracy of streamflow predictions at seasonal leads. In this work, we use surface (0-5 cm) soil moisture retrievals obtained with the National Aeronautics and Space Administration's Soil Moisture Active Passive satellite instrument in conjunction with streamflow measurements taken within 236 intermediate-scale (2000-10,000 km2) unregulated river basins in the conterminous United States to show that late-fall satellite-based surface soil moisture estimates are indeed strongly connected to subsequent springtime streamflow. We thus show that the satellite-based soil moisture retrievals, all by themselves, have the potential to produce skillful seasonal streamflow predictions several months in advance. In poorly instrumented regions, they could perform better than reanalysis soil moisture products in this regard.


Assuntos
Rios , Solo , Estados Unidos , Estações do Ano
2.
J Geophys Res Atmos ; 125(5)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33959467

RESUMO

The Global Modeling and Assimilation Office (GMAO) has recently released a new version of the Goddard Earth Observing System (GEOS) Sub-seasonal to Seasonal prediction (S2S) system, GEOS-S2S-2, that represents a substantial improvement in performance and infrastructure over the previous system. The system is described here in detail, and results are presented from forecasts, climate equillibrium simulations and data assimilation experiments. The climate or equillibrium state of the atmosphere and ocean showed a substantial reduction in bias relative to GEOS-S2S-1. The GEOS-S2S-2 coupled reanalysis also showed substantial improvements, attributed to the assimilation of along-track Absolute Dynamic Topography. The forecast skill on subseasonal scales showed a much-improved prediction of the Madden-Julian Oscillation in GEOS-S2S-2, and on a seasonal scale the tropical Pacific forecasts show substantial improvement in the east and comparable skill to GEOS-S2S-1 in the central Pacific. GEOS-S2S-2 anomaly correlations of both land surface temperature and precipitation were comparable to GEOS-S2S-1, and showed substantially reduced root mean square error of surface temperature. The remaining issues described here are being addressed in the development of GEOS-S2S Version 3, and with that system GMAO will continue its tradition of maintaining a state of the art seasonal prediction system for use in evaluating the impact on seasonal and decadal forecasts of assimilating newly available satellite observations, as well as to evaluate additional sources of predictability in the earth system through the expanded coupling of the earth system model and assimilation components.

3.
Water Resour Res ; 54(7): 4228-4244, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30319160

RESUMO

Soil Moisture Active Passive (SMAP) Level-2 soil moisture retrievals collected during 2015-2017 are used in isolation to estimate 10-day warm-season precipitation and streamflow totals within 145 medium-sized (2,000-10,000 km2) unregulated watersheds in the conterminous United States. The precipitation estimation algorithm, derived from a well documented approach, includes a locally-calibrated loss function component that significantly improves its performance. For the basin-scale water budget analysis, the precipitation and streamflow algorithms are calibrated with two years of SMAP retrievals in conjunction with observed precipitation and streamflow data and are then applied to SMAP retrievals alone during a third year. While estimation accuracy (as measured by the square of the correlation coefficient, r2, between estimates and observations) varies by basin, the average r2 for the basins is 0.53 for precipitation and 0.22 for streamflow. For the subset of 22 basins that calibrate particularly well, the r2 increases to 0.63 for precipitation and to 0.51 for streamflow. The magnitudes of the estimated variables are also accurate, with sample pairs generally clustered about the 1:1 line. The chief limitation to the estimation involves large biases induced during periods of high rainfall; the accuracy of the estimates (in terms of r2 and RMSE) increases significantly when periods of higher rainfall are not considered. The potential for transferability is also demonstrated by calibrating the streamflow estimation equation in one basin and then applying the equation in another. Overall, the study demonstrates that SMAP retrievals contain, all by themselves, information that can be used to estimate large-scale water budgets.

4.
J Hydrometeorol ; 19(4): 727-741, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29983646

RESUMO

The assimilation of remotely sensed soil moisture information into a land surface model has been shown in past studies to contribute accuracy to the simulated hydrological variables. Remotely sensed data, however, can also be used to improve the model itself through the calibration of the model's parameters, and this can also increase the accuracy of model products. Here, data provided by the Soil Moisture Active/Passive (SMAP) satellite mission are applied to the land surface component of the NASA GEOS Earth system model using both data assimilation and model calibration in order to quantify the relative degrees to which each strategy improves the estimation of near-surface soil moisture and streamflow. The two approaches show significant complementarity in their ability to extract useful information from the SMAP data record. Data assimilation reduces the ubRMSE (the RMSE after removing the long-term bias) of soil moisture estimates and improves the timing of streamflow variations, whereas model calibration reduces the model biases in both soil moisture and streamflow. While both approaches lead to an improved timing of simulated soil moisture, these contributions are largely independent; joint use of both approaches provides the highest soil moisture simulation accuracy.

5.
J Hydrometeorol ; 19(No 2): 375-392, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29714354

RESUMO

We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

6.
Remote Sens Environ ; 219: 339-352, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217640

RESUMO

Monitoring the effects of water availability on vegetation globally using satellites is important for applications such as drought early warning, precision agriculture, and food security as well as for more broadly understanding relationships between water and carbon cycles. In this global study, we examine how quickly several satellite-based indicators, assumed to have relationships with water availability, respond, on timescales of days to weeks, in comparison with variations in root-zone soil moisture (RZM) that extends to about 1 m depth. The satellite indicators considered are the normalized difference vegetation and infrared indices (NDVI and NDII, respectively) derived from reflectances obtained with moderately wide (20-40 nm) spectral bands in the visible and near-infrared (NIR) and evapotranspiration (ET) estimated from thermal infrared observations and normalized by a reference ET. NDVI is primarily sensitive to chlorophyll contributions and vegetation structure while NDII may contain additional information on water content in leaves and canopy. ET includes both the loss of root zone soil water through transpiration (modulated by stomatal conductance) as well as evaporation from bare soil. We find that variations of these satellite-based drought indicators on time scales of days to weeks have significant correlations with those of RZM in the same water-limited geographical locations that are dominated by grasslands, shrublands, and savannas whose root systems are generally contained within the 1 m RZM layer. Normalized ET interannual variations show generally a faster response to water deficits and enhancements as compared with those of NDVI and NDII, particularly in sparsely vegetated regions.

7.
J Hydrometeorol ; 18(12): 3217-3237, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364509

RESUMO

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of ~0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under ~3 K), the soil moisture increments (under ~0.01 m3 m-3), and the surface soil temperature increments (under ~1 K). Typical instantaneous values are ~6 K for O-F residuals, ~0.01 (~0.003) m3 m-3 for surface (root-zone) soil moisture increments, and ~0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

8.
J Hydrometeorol ; 18(3): 837-843, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29930485

RESUMO

NASA's Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2-3 days and a latency of 24 hours. Here, to enhance the utility of the SMAP data, we present an approach for improving real-time soil moisture estimates ("nowcasts") and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.

9.
Hydrol Earth Syst Sci ; 21(7): 3777-3798, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29983506

RESUMO

Recent research in large-scale hydroclimatic variability is surveyed, focusing on five topics: (i) variability in general, (ii) droughts, (iii) floods, (iv) land-atmosphere coupling, and (v) hydroclimatic prediction. Each surveyed topic is supplemented by illustrative examples of recent research, as presented at a 2016 symposium honoring the career of Professor Eric Wood. Taken together, the recent literature and the illustrative examples clearly show that current research into hydroclimatic variability is strong, vibrant, and multifaceted.

10.
J Clim ; Volume 30(Iss 13): 5419-5454, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32020988

RESUMO

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASA's Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA's terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).

11.
J Adv Model Earth Syst ; 9(7): 2771-2795, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32607137

RESUMO

Besides soil hydrology and snow processes, the NASA Catchment Land Surface Model (CLSM) simulates soil temperature in six layers from the surface down to 13m depth. In this study, to examine CLSM's treatment of subsurface thermodynamics, a baseline simulation produced subsurface temperatures for 1980-2014 across Alaska at 9-km resolution. The results were evaluated using in situ observations from permafrost sites across Alaska. The baseline simulation was found to capture the broad features of inter- and intra-annual variations in soil temperature. Additional model experiments revealed that: (i) the representativeness of local meteorological forcing limits the model's ability to accurately reproduce soil temperature, and (ii) vegetation heterogeneity has a profound influence on subsurface thermodynamics via impacts on the snow physics and energy exchange at surface. Specifically, the profile-average RMSE for soil temperature was reduced from 2.96°C to 2.10°C at one site and from 2.38°C to 2.25°C at another by using local forcing and land cover, respectively. Moreover, accounting for the influence of soil organic carbon on the soil thermal properties in CLSM leads to further improvements in profile-average soil temperature RMSE, with reductions of 16% to 56% across the different study sites. The mean bias of climatological ALT is reduced by 36% to 89%, and the RMSE is reduced by 11% to 47%. Finally, results reveal that at some sites it may be essential to include a purely organic soil layer to obtain, in conjunction with vegetation and snow effects, a realistic "buffer zone" between the atmospheric forcing and soil thermal processes.

12.
Water Resour Res ; 52(9): 7213-7225, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29983456

RESUMO

An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS datasets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to ~100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

13.
J Hydrometeorol ; 17(4): 1049-1067, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29645013

RESUMO

Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

14.
J Hydrometeorol ; Volume 17(No 12): 3045-3061, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29683144

RESUMO

Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the Northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here we use a state-of-the-art atmospheric reanalysis to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern Era Retrospective Analysis for Research and Applications - Version 2 (MERRA-2) are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500 hPa heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10% of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cut off low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the east coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic scale baroclinic disturbances.

15.
J Clim ; 29(21): 7869-7887, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747850

RESUMO

This study examines the causes and predictability of the spring 2011 U.S. extreme weather using the Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalyses and Goddard Earth Observing System, version 5 (GEOS-5) Atmospheric General Circulation Model simulations. The focus is on assessing the impact on precipitation of sea surface temperature (SST) anomalies, land conditions, and large-scale atmospheric modes of variability. A key result is that the April record-breaking precipitation in the Ohio River Valley was primarily the result of the unforced development of a positive North Atlantic Oscillation (NAO)-like mode of variability with unusually large amplitude, limiting the predictability of the precipitation in that region at one month leads. SST forcing (La Nina conditions) contributed to the broader continental scale pattern of precipitation anomalies, producing drying in the southern plains and weak wet anomalies in the northeast, while the impact of realistic initial North American land conditions was to enhance precipitation in the upper Midwest and produce deficits in the southeast. It was further found that: The March 1 atmospheric initial condition was the primary source of the ensemble mean precipitation response over the eastern U.S. in April (well beyond the limit of weather predictability) suggesting an influence on the initial state of the previous SST forcing and/or tropospheric/stratospheric coupling linked to an unusually persistent and cold polar vortex.Stationary wave model experiments suggest that the SST-forced base state for April enhanced the amplitude of the NAO response compared to that of the climatological state, though the impact is modest and can be of either sign.

16.
Science ; 305(5687): 1138-40, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15326351

RESUMO

Previous estimates of land-atmosphere interaction (the impact of soil moisture on precipitation) have been limited by a lack of observational data and by the model dependence of computational estimates. To counter the second limitation, a dozen climate-modeling groups have recently performed the same highly controlled numerical experiment as part of a coordinated comparison project. This allows a multimodel estimation of the regions on Earth where precipitation is affected by soil moisture anomalies during Northern Hemisphere summer. Potential benefits of this estimation may include improved seasonal rainfall forecasts.

17.
Science ; 303(5665): 1855-9, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15031502

RESUMO

During the 1930s, the United States experienced one of the most devastating droughts of the past century. The drought affected almost two-thirds of the country and parts of Mexico and Canada and was infamous for the numerous dust storms that occurred in the southern Great Plains. In this study, we present model results that indicate that the drought was caused by anomalous tropical sea surface temperatures during that decade and that interactions between the atmosphere and the land surface increased its severity. We also contrast the 1930s drought with other North American droughts of the 20th century.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...