Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(44): 36792-803, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22969088

RESUMO

The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H(+) FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1-5 and TMS6-10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Simportadores/química , Adenina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Citosina/química , Proteínas Fúngicas/genética , Guanina/química , Ligação de Hidrogênio , Hipoxantina/química , Hipoxantina/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Especificidade por Substrato , Simportadores/genética
2.
PLoS One ; 7(7): e41939, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848666

RESUMO

Using the crystal structure of the uracil transporter UraA of Escherichia coli, we constructed a 3D model of the Aspergillus nidulans uric acid-xanthine/H(+) symporter UapA, which is a prototype member of the Nucleobase-Ascorbate Transporter (NAT) family. The model consists of 14 transmembrane segments (TMSs) divided into a core and a gate domain, the later being distinctly different from that of UraA. By implementing Molecular Mechanics (MM) simulations and quantitative structure-activity relationship (SAR) approaches, we propose a model for the xanthine-UapA complex where the substrate binding site is formed by the polar side chains of residues E356 (TMS8) and Q408 (TMS10) and the backbones of A407 (TMS10) and F155 (TMS3). In addition, our model shows several polar interactions between TMS1-TMS10, TMS1-TMS3, TMS8-TMS10, which seem critical for UapA transport activity. Using extensive docking calculations we identify a cytoplasm-facing substrate trajectory (D360, A363, G411, T416, R417, V463 and A469) connecting the proposed substrate binding site with the cytoplasm, as well as, a possible outward-facing gate leading towards the substrate major binding site. Most importantly, re-evaluation of the plethora of available and analysis of a number of herein constructed UapA mutations strongly supports the UapA structural model. Furthermore, modeling and docking approaches with mammalian NAT homologues provided a molecular rationale on how specificity in this family of carriers might be determined, and further support the importance of selectivity gates acting independently from the major central substrate binding site.


Assuntos
Aspergillus nidulans , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Citoplasma/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Xantinas/metabolismo
3.
J Mol Biol ; 411(3): 567-80, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21722649

RESUMO

Earlier, we identified mutations in the first transmembrane segment (TMS1) of UapA, a uric acid-xanthine transporter in Aspergillus nidulans, that affect its turnover and subcellular localization. Here, we use one of these mutations (H86D) and a novel mutation (I74D) as well as genetic suppressors of them, to show that TMS1 is a key domain for proper folding, trafficking and turnover. Kinetic analysis of mutants further revealed that partial misfolding and deficient trafficking of UapA does not affect its affinity for xanthine transport, but reduces that of uric acid and confers a degree of promiscuity towards the binding of other purines. This result strengthens the idea that subtle interactions among domains not directly involved in substrate binding refine the selectivity of UapA. Characterization of second-site suppressors of H86D revealed a genetic interaction of TMS1 with TMS3, the latter segment shown for the first time to be important for UapA function. Systematic mutational analysis of polar and conserved residues in TMS3 showed that Ser154 is crucial for UapA transport activity. Our results are in agreement with a topological model of UapA built on the recently published structure of UraA, a bacterial homolog of UapA.


Assuntos
Aspergillus nidulans/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Sequência de Aminoácidos , Substituição de Aminoácidos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleobases/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
4.
J Mol Biol ; 397(5): 1132-43, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20188741

RESUMO

In the UapA uric acid-xanthine permease of Aspergillus nidulans, subtle interactions between key residues of the putative substrate binding pocket, located in the TMS8-TMS9 loop (where TMS is transmembrane segment), and a specificity filter, implicating residues in TMS12 and the TMS1-TMS2 loop, are critical for function and specificity. By using a strain lacking all transporters involved in adenine uptake (DeltaazgA DeltafcyB DeltauapC) and carrying a mutation that partially inactivates the UapA specificity filter (F528S), we obtained 28 mutants capable of UapA-mediated growth on adenine. Seventy-two percent of mutants concern replacements of a single residue, R481, in the putative cytoplasmic loop TMS10-TMS11. Five missense mutations are located in TMS9, in TMS10 or in loops TMS1-TMS2 and TMS8-TMS9. Mutations in the latter loops concern residues previously shown to enlarge UapA specificity (Q113L) or to be part of a motif involved in substrate binding (F406Y). In all mutants, the ability of UapA to transport its physiological substrates remains intact, whereas the increased capacity for transport of adenine and other purines seems to be due to the elimination of elements that hinder the translocation of non-physiological substrates through UapA, rather than to an increase in relevant binding affinities. The additive effects of most novel mutations with F528S and allele-specific interactions of mutation R481G (TMS10-TMS11 loop) with Q113L (TMS1-TMS2 loop) or T526M (TMS12) establish specific interdomain synergy as a critical determinant for substrate selection. Our results strongly suggest that distinct domains at both sides of UapA act as selective dynamic gates controlling substrate access to their translocation pathway.


Assuntos
Aspergillus nidulans/química , Proteínas Fúngicas/química , Proteínas de Membrana Transportadoras/química , Adenina/metabolismo , Aspergillus nidulans/metabolismo , Transporte Biológico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação de Sentido Incorreto , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...