Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175771

RESUMO

The weak point of ionic liquids is their high viscosity, limiting the maximum polymer concentration in the forming solutions. A low-viscous co-solvent can reduce viscosity, but cellulose has none. This study demonstrates that dimethyl sulfoxide (DMSO), being non-solvent for cellulose, can act as a nominal co-solvent to improve its processing into a nanofiltration membrane by phase inversion. A study of the rheology of cellulose solutions in diluted ionic liquids ([EMIM]Ac, [EMIM]Cl, and [BMIM]Ac) containing up to 75% DMSO showed the possibility of decreasing the viscosity by up to 50 times while keeping the same cellulose concentration. Surprisingly, typical cellulose non-solvents (water, methanol, ethanol, and isopropanol) behave similarly, reducing the viscosity at low doses but causing structuring of the cellulose solution and its phase separation at high concentrations. According to laser interferometry, the nature of these non-solvents affects the mass transfer direction relative to the forming membrane and the substance interdiffusion rate, which increases by four-fold when passing from isopropanol to methanol or water. Examination of the nanofiltration characteristics of the obtained membranes showed that the dilution of ionic liquid enhances the rejection without changing the permeability, while the transition to alcohols increases the permeability while maintaining the rejection.


Assuntos
Líquidos Iônicos , Solventes , Celulose , Dimetil Sulfóxido , 2-Propanol , Metanol , Água , Reologia , Viscosidade
2.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770215

RESUMO

The usual way to protect indoor areas from solar UV radiation is to use UV-absorbing materials, which are applied as a thin film on the surface of the windowpane. Asphaltenes are useless wastes from crude oil refining that absorb UV radiation well, which gave the idea of their use in protective coatings. Pressure-sensitive adhesives based on polyisobutylene containing from 5 to 30 wt% of asphaltenes were obtained. Deterioration of the adhesive properties with the introduction of 5-20 wt% of asphaltenes was shown by adhesion tests, which can be associated with the plasticization of the polymer matrix. At the same time, the use of 30 wt% of asphaltenes leads to the polymer matrix reinforcement with the restoration of adhesive properties to the original level or even slightly higher. The rheological study of adhesives at 25 °C and 120 °C showed the structural network formation by asphaltenes at a content of 30 wt%, explaining the increase in adhesion performance. According to microscopy, asphaltenes are flat brown glass shards in a polymer matrix. They absorb electromagnetic radiation, predominantly in the UV range, while maintaining relative translucency in the visible range. This makes it possible to obtain thin films from the asphaltene-filled adhesive for bonding glass sheets to produce UV-blocked and tinted windowpanes.

3.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297874

RESUMO

Asphaltene/resin blend (ARB) extracted from heavy crude oil was used to modify poly(styrene-block-isoprene-block-styrene) (SIS) to make it an adhesive. There were prepared double and triple mixtures containing 10-60% SIS, 10-40% ARB, and 10-50% naphthenic oil used as an additional plasticizer. The viscoelasticity of the mixtures at 25 °C and 120 °C was studied, their flow curves were obtained, and the temperature dependences of the loss tangent and the components of the complex modulus were measured. In addition, the mixtures were used as hot-melt adhesives (HMAs) and pressure-sensitive adhesives (PSAs) in the shear, peel, and pull-off tests of the adhesive bonds that they formed with steel. Both naphthenic oil and ARB act as plasticizers for SIS and make it sticky. However, only the combined use of ARB and the oil allows for achieving the best set of adhesive properties of the SIS-based mixture. High-quality HMA requires low oil content (optimal SIS/ARB/oil ratio is 50/40/10, pull-off adhesion strength (τt) of 1990 kPa), whereas a lot of the oil is needed to give SIS characteristics of a PSA (SIS/ARB/oil is 20/40/40, τt of 100 kPa). At the same time, the resulting PSA can be used as a hot-melt pressure-sensitive adhesive (HMPSA) that has many times lower viscosity than HMA (13.9 Pa·s versus 2640 Pa·s at 120 °C and 1 s-1) but provides a less strong adhesive bond (τt of 960 kPa).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...