Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(42): 23196-23204, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37831634

RESUMO

The promise of artificial photosynthesis to solve environmental and energy issues such as global warming and the depletion of fossil fuels has inspired intensive research into photocatalytic systems for CO2 reduction to produce value-added chemicals such as CO and CH3OH. Among the photocatalytic systems for CO2 reduction, self-photosensitizing catalysts, bearing the functions of both photosensitization and catalysis, have attracted considerable attention recently, as such catalysts do not depend on the efficiency of electron transfer from the photosensitizer to the catalyst. Here, we have synthesized and characterized a dinuclear RuII complex bearing two molecules of a tripodal hexadentate ligand as chelating and linking ligands by X-ray crystallography to establish the structure explicitly and have used various spectroscopic and electrochemical methods to elucidate the photoredox characteristics. The dinuclear complex has been revealed to act as a self-photosensitizing catalyst, which acts not only as a photosensitizer but also as a catalyst for CO2 reduction. The dinuclear RuII complex is highly durable and performs efficient and selective CO2 reduction to produce CO with a turnover number of 2400 for 26 h. The quantum yield of the CO formation is also very high─19.7%─and the catalysis is efficient, even at a low concentration (∼1.5%) of CO2.

2.
JACS Au ; 3(10): 2813-2825, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885582

RESUMO

We have synthesized and characterized a RuII-OH2 complex (2), which has a pentadentate ligand with two pivalamide groups as bulky hydrogen-bonding (HB) moieties in the second coordination sphere (SCS). Complex 2 exhibits a coordination equilibrium through the coordination of one of the pivalamide oxygens to the Ru center in water, affording a η6-coordinated complex, 3. A detailed thermodynamic analysis of the coordination equilibrium revealed that the formation of 3 from 2 is entropy-driven owing to the dissociation of the axial aqua ligand in 2. Complex 2 was oxidized by a CeIV salt to produce the corresponding RuIII(OH) complex (5), which was characterized crystallographically. In the crystal structure of 5, hydrogen bonds are formed among the NH groups of the pivalamide moieties and the oxygen atom of the hydroxo ligand. Further 1e--oxidation of 5 yields the corresponding RuIV(O) complex, 6, which has intramolecular HB of the oxo ligand with two amide N-H protons. Additionally, the RuIII(OH) complex, 5, exhibits disproportionation to the corresponding RuIV(O) complex, 6, and a mixture of the RuII complexes, 2 and 3, in an acidic aqueous solution. We investigated the oxidation of a phenol derivative using complex 6 as the active species and clarified the switch of the reaction mechanism from hydrogen-atom transfer at pH 2.5 to electron transfer, followed by proton transfer at pH 1.0. Additionally, the intramolecular HB in 6 exerts enhancing effects on oxygen-atom transfer reactions from 6 to alkenes such as cyclohexene and its water-soluble derivative to afford the corresponding epoxides, relative to the corresponding RuIV(O) complex (6') lacking the HB moieties in the SCS.

3.
Nature ; 616(7957): 476-481, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020016

RESUMO

Using natural gas as chemical feedstock requires efficient oxidation of the constituent alkanes-and primarily methane1,2. The current industrial process uses steam reforming at high temperatures and pressures3,4 to generate a gas mixture that is then further converted into products such as methanol. Molecular Pt catalysts5-7 have also been used to convert methane to methanol8, but their selectivity is generally low owing to overoxidation-the initial oxidation products tend to be easier to oxidize than methane itself. Here we show that N-heterocyclic carbene-ligated FeII complexes with a hydrophobic cavity capture hydrophobic methane substrate from an aqueous solution and, after oxidation by the Fe centre, release a hydrophilic methanol product back into the solution. We find that increasing the size of the hydrophobic cavities enhances this effect, giving a turnover number of 5.0 × 102 and a methanol selectivity of 83% during a 3-h methane oxidation reaction. If the transport limitations arising from the processing of methane in an aqueous medium can be overcome, this catch-and-release strategy provides an efficient and selective approach to using naturally abundant alkane resources.

4.
Chem Soc Rev ; 51(17): 7560-7630, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35959748

RESUMO

Porphyrins are variously substituted tetrapyrrolic macrocycles, with wide-ranging biological and chemical applications derived from metal chelation in the core and the 18π aromatic surface. Under suitable conditions, the porphyrin framework can deform significantly from regular planar shape, owing to steric overload on the porphyrin periphery or steric repulsion in the core, among other structure modulation strategies. Adopting this nonplanar porphyrin architecture allows guest molecules to interact directly with an exposed core, with guest-responsive and photoactive electronic states of the porphyrin allowing energy, information, atom and electron transfer within and between these species. This functionality can be incorporated and tuned by decoration of functional groups and electronic modifications, with individual deformation profiles adapted to specific key sensing and catalysis applications. Nonplanar porphyrins are assisting breakthroughs in molecular recognition, organo- and photoredox catalysis; simultaneously bio-inspired and distinctly synthetic, these molecules offer a new dimension in shape-responsive host-guest chemistry. In this review, we have summarized the synthetic methods and design aspects of nonplanar porphyrin formation, key properties, structure and functionality of the nonplanar aromatic framework, and the scope and utility of this emerging class towards outstanding scientific, industrial and environmental issues.


Assuntos
Porfirinas , Porfirinas/química
5.
Biomater Sci ; 9(18): 6142-6152, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34346413

RESUMO

Heme binds to a parallel-stranded G-quadruplex DNA to form a peroxidase-mimicking heme-DNAzyme. An interpolyelectrolyte complex between the heme-DNAzyme and a cationic copolymer possessing protonated amino groups was characterized and the peroxidase activity of the complex was evaluated to elucidate the effect of the polymer on the catalytic activity of the heme-DNAzyme. We found that the catalytic activity of the heme-DNAzyme is enhanced through the formation of the interpolyelectrolyte complex due to the general acid catalysis of protonated amino groups of the polymer, enhancing the formation of the iron(IV)oxo porphyrin π-cation radical intermediate known as Compound I. This finding indicates that the polymer with protonated amino groups can act as a cocatalyst for the heme-DNAzyme in the oxidation catalysis. We also found that the enhancement of the activity of the heme-DNAzyme by the polymer depends on the local heme environment such as the negative charge density in the proximity of the heme and substrate accessibility to the heme. These findings provide novel insights as to molecular design of the heme-DNAzyme for enhancing its catalytic activity.


Assuntos
DNA Catalítico , Cátions , Heme , Peroxidase , Peroxidases , Polímeros
6.
Dalton Trans ; 49(47): 17230-17242, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33210674

RESUMO

A RuII complex, [RuII(tpphz)(bpy)2]2+ (1) (tpphz = tetrapyridophenazine, bpy = 2,2'-bipyridine), whose tpphz ligand has a pyrazine moiety, is converted efficiently to [RuII(tpphz-HH)(bpy)2]2+ (2) having a dihydropyrazine moiety upon photoirradiation of a water-methanol mixed solvent solution of 1 in the presence of an electron donor. In this reaction, the triplet metal-to-ligand charge-transfer excited state (3MLCT*) of 1 is firstly formed upon photoirradiation and the 3MLCT* state is reductively quenched with an electron donor to afford [RuII(tpphz˙-)(bpy)2]+, which is converted to 2 without the observation of detectable reduced intermediates by nano-second laser flash photolysis. The inverse kinetic isotope effect (KIE) was observed to be 0.63 in the N-H bond formation of 2 at the dihydropyrazine moiety. White-light (380-670 nm) irradiation of a solution of 1 in a protic solvent, in the presence of an electron donor under an inert atmosphere, led to photocatalytic H2 evolution and the hydrogenation of organic substrates. In the reactions, complex 2 is required to be excited to form its 3MLCT* state to react with a proton and aldehydes. In photocatalytic H2 evolution, the H-H bond formation between photoexcited 2 and a proton is involved in the rate-determining step with normal KIE being 5.2 on H2 evolving rates. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations on the reaction mechanism of H2 evolution from the ground and photo-excited states of 2 were performed to have a better understanding of the photocatalytic processes.

7.
J Am Chem Soc ; 142(40): 16982-16989, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924508

RESUMO

We have thoroughly investigated the oxidation of benzyl alcohol (BA) derivatives by a RuIV(O) complex (RuIV(O)) in the absence or presence of Brønsted acids in order to elucidate the proton-coupled electron-transfer (PCET) mechanisms in C-H oxidation on the basis of a kinetic analysis. Oxidation of BA derivatives by RuIV(O) without acids proceeded through concerted proton-electron transfer (CPET) with a large kinetic isotope effect (KIE). In contrast, the oxidation of 3,4,5-trimethoxy-BA ((MeO)3-BA) by RuIV(O) was accelerated by the addition of acids, in which the KIE value reached 1.1 with TFA (550 mM), indicating an alteration of the PCET mechanism from CPET to stepwise electron transfer (ET) followed by proton transfer (PT). Although the oxidized products of BA derivatives were confirmed to be the corresponding benzaldehydes in the range of acid concentrations (0-550 mM), a one-electron-reduction potential of RuIV(O) was positively shifted with increases in the concentrations of acids. The elevated reduction potential of RuIV(O) strongly influenced the PCET mechanisms in the oxidation of (MeO)3-BA, changing the mechanism from CPET to ET/PT, as evidenced by the driving-force dependence of logarithms of reaction rate constants in light of the Marcus theory of ET. In addition, dependence of activation parameters on acid concentrations suggested that an oxidative asynchronous CPET, which is not an admixture of the CPET and ET/PT mechanisms, is probably operative in the boundary region (0 mM < [TFA] < 50 mM) involving a one-proton-interacted RuIV(O)···H+ as a dominant reactive species.

8.
Chem Commun (Camb) ; 56(68): 9783-9786, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32716434

RESUMO

An FeII complex, 1, having a pentadentate ligand with an NHC moiety catalyzes substrate oxidation to afford 2e--oxidized products with high selectivity by suppression of overoxidation in water. A Bell-Evance-Polanyi plot for the substrate oxidation catalyzed by 1 exhibited an inflection point around 86 kcal mol-1, indicating strong C-H abstraction ability of the reactive species derived from 1.

9.
Inorg Chem ; 59(17): 11976-11985, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32648749

RESUMO

Novel heterodinuclear IrIII-MII complexes (M = Co, Ni, or Cu) with two adjacent reaction sites were synthesized by using 3,5-bis(2-pyridyl)-pyrazole (Hbpp) as a structure-directing ligand and employed as catalysts for H2 evolution through formic acid dehydrogenation in water. A cooperative effect of the hetero-metal centers was observed in the H2 evolution in comparison with the corresponding mononuclear IrIII and MII complexes as the components of the IrIII-MII complexes. The H2 evolution rate for the IrIII-MII complexes was at most 350-fold higher than that of the mononuclear IrIII complex. The catalytic activity increased in the following order: IrIII-CuII complex < IrIII-CoII complex < IrIII-NiII complex . The IrIII-H intermediates of the IrIII-MII complexes were successfully detected by ultraviolet-visible, 1H nuclear magnetic resonance, and ESI-TOF-MS spectra. The catalytic enhancement of H2 evolution by the IrIII-MII complexes indicates that the IrIII-H species formed in the IrIII moiety act as reactive species and the MII moieties act as acceleration sites by the electronic effect from the MII center to the IrIII center through the bridging bpp- ligand. The IrIII-MII complexes may also activate H2O at the 3d MII centers as a proton source to facilitate H2 evolution. In addition, the affinity of formate for the IrIII-MII complexes was investigated on the basis of Michaelis-Menten plots; the IrIII-CoII and IrIII-NiII complexes exhibited affinities that were relatively higher than that of the IrIII-CuII complex. The catalytic mechanism of H2 evolution by the IrIII-MII complexes was revealed on the basis of spectroscopic detection of reaction intermediates, kinetic analysis, and isotope labeling experiments.

11.
Chemistry ; 26(46): 10480-10486, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32329533

RESUMO

Selective two-electron reduction of dioxygen (O2 ) to hydrogen peroxide (H2 O2 ) has been achieved by two saddle-distorted N,N'-dimethylated porphyrin isomers, an N21,N'22-dimethylated porphyrin (anti-Me2 P) and an N21,N'23-dimethylated porphyrin (syn-Me2 P) as catalysts and ferrocene derivatives as electron donors in the presence of protic acids in acetonitrile. The higher catalytic performance in an oxygen reduction reaction (ORR) was achieved by anti-Me2 P with higher turnover number (TON=250 for 30 min) than that by syn-Me2 P (TON=218 for 60 min). The reactive intermediates in the catalytic ORR were confirmed to be the corresponding isophlorins (anti-Me2 Iph or syn-Me2 Iph) by spectroscopic measurements. The rate-determining step in the catalytic ORRs was concluded to be proton-coupled electron-transfer reduction of O2 with isophlorins based on kinetic analysis. The ORR rate by anti-Me2 Iph was accelerated by external protons, judging from the dependence of the observed initial rates on acid concentrations. In contrast, no acceleration of the ORR rate with syn-Me2 Iph by external protons was observed. The different mechanisms in the O2 reduction by the two isomers should be derived from that of the arrangement of hydrogen bonding of a O2 with inner NH protons of the isophlorins.

12.
J Am Chem Soc ; 141(51): 20309-20317, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31726829

RESUMO

We have synthesized a new Ni(II) complex having an S2N2-tetradentate ligand with two noncoordinating pyridine pendants as binding sites of Lewis-acidic metal ions in the vicinity of the Ni center, aiming at efficient CO production in photocatalytic CO2 reduction. In the presence of Mg2+ ions, enhancement of selective CO formation was observed in photocatalytic CO2 reduction by the Ni complex with the pyridine pendants through the formation of a Mg2+-bound species, as compared to the previously reported Ni complex without the Lewis-acid capturing sites. A higher quantum yield of CO evolution for the Mg2+-bound Ni complex was determined to be 11.1%. Even at lower CO2 concentration (5%), the Ni complex with the pendants exhibited comparable CO production to that at the CO2-saturated concentration (100%). The Mg2+-bound Ni complex was evidenced by mass spectrometry and 1H NMR measurements. The enhancement of CO2 reduction by the Mg2+-bound species should be derived from cooperativity between the Ni and Mg centers for the stabilization of a Ni-CO2 intermediate by a Lewis-acidic Mg2+ ion captured in the vicinity of the Ni center, as supported by DFT calculations. The detailed mechanism of photocatalytic CO2 reduction by the Ni complex with the pyridine pendants in the presence of Mg2+ ions is discussed based on spectroscopic detection of the intermediate and kinetic analysis.

13.
Inorg Chem ; 58(19): 12815-12824, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31553593

RESUMO

A RuII-NH3 complex, 2, was oxidized through a proton-coupled electron transfer (PCET) mechanism with a CeIV complex in water at pH 2.5 to generate a RuV═NH complex, 5. Complex 5 was characterized with various spectroscopies, and the spin state was determined by the Evans method to be S = 1/2. The reactivity of 5 in substrate C-H oxidation was scrutinized in acidic water, using water-soluble organic substrates such as sodium ethylbenzene-sulfonate (EBS), which gave the corresponding 1-phenylethanol derivative as the product. In the substrate oxidation, complex 5 was converted to the corresponding RuIII-NH3 complex, 3. The formation of 1-phenylethanol derivative from EBS and that of 3 indicate that complex 5 as the oxidant does not perform nitrogen-atom transfer, in sharp contrast to other high-valent metal-imido complexes reported so far. Oxidation of cyclobutanol by 5 afforded only cyclobutanone as the product, indicating that the substrate oxidation by 5 proceeds through a hydride-transfer mechanism. In the kinetic analysis on the C-H oxidation, we observed kinetic isotope effects (KIEs) on the C-H oxidation with use of deuterated substrates and remarkably large solvent KIE (sKIE) in D2O. These positive KIEs indicate that the rate-determining step involves not only cleavage of the C-H bond of the substrate but also proton transfer from water molecules to 5. The unique hydride-transfer mechanism in the substrate oxidation by 5 is probably derived from the fact that the RuIV-NH2 complex (4) formed from 5 by 1e-/1H+ reduction is unstable and quickly disproportionates into 3 and 5.

14.
Inorg Chem ; 58(17): 11284-11288, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31398017

RESUMO

We have designed and synthesized a hetero-dinuclear RuII-CoII complex with a dinucleating ligand inspired by hetero-dinuclear active sites of metalloenzymes. A synergistic effect between the adjacent RuII and CoII sites has been confirmed in catalytic olefin hydrogenation by the complex, exhibiting a much higher turnover number than those of mononuclear RuII or CoII complexes as the components. A RuII-hydrido species was detected by 1H NMR and electrospray ionization (ESI)-time-of-flight (TOF)-MS measurements as an intermediate to react with olefins, and CoII-bound methanol was suggested to act as a proton source.

15.
Dalton Trans ; 48(35): 13154-13161, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31328211

RESUMO

Isolation and characterisation of RuIV(O) complexes were accomplished to investigate their fundamental electron transfer (ET) and proton-coupled ET (PCET) properties. Reorganisation energies (λ) in electron transfer (ET) and proton-coupled ET (PCET) from electron donors to the isolated RuIV(O) complexes have been determined for the first time to be in the range of 1.70-1.88 eV (ET) and 1.20-1.26 eV (PCET). It was suggested that the reduction of the λ values of PCET in comparison with those of ET should be due to the smaller structural change in PCET than that in ET on the basis of DFT calculations on 1 and 1e--reduced 1 in the absence and presence of TFA, respectively. In addition, the smaller λ values for the RuIV(O) complexes than those reported for FeIV(O) and MnIV(O) complexes should be due to the lack of participation of dσ orbitals in the ET and PCET reactions. This is the first example to evaluate fundamental ET and PCET properties of RuIV(O) complexes leading to further understanding of their reactivity in oxidation reactions.

16.
Chem Commun (Camb) ; 55(34): 4925-4928, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30968095

RESUMO

Photocatalytic O2 reduction reactions proceeded to produce H2O2 using a diprotonated saddle-distorted dodecaphenylporphyrin as a photocatalyst. The quantum yield (12%), the turnover number (3000 for 6 h), and the turnover frequency (500 h-1) are achieved in photocatalytic systems based on free-base porphyrins for the first time. The photocatalytic reaction mechanism has been revealed by ns-laser flash photolysis and kinetic analysis.

17.
J Am Chem Soc ; 141(14): 5987-5994, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30882221

RESUMO

Interconversion between dioxygen (O2) and hydrogen peroxide (H2O2) has attracted much interest because of the growing importance of H2O2 as an energy source. There are many reports on O2 conversions to H2O2; however, no example has been reported on O2/H2O2 interconversion. Herein, we describe successful achievement of a reversible O2/H2O2 conversion based on an N21, N23-dimethylated saddle-distorted porphyrin and the corresponding two-electron-reduced porphyrin (isophlorin) for the first time. The isophlorin could react with O2 to afford the corresponding porphyrin and H2O2; conversely, the porphyrin also reacted with excess H2O2 to reproduce the corresponding isophlorin and O2. The isophlorin-O2/porphyrin-H2O2 interconversion was repeatedly proceeded by alternate bubbling of Ar or O2, although no reversible conversion was observed in the case of an N21, N22-dimethylated porphyrin as a structural isomer. Such a drastic change of the reversibility was derived from the directions of inner N H protons in hydrogen-bond formation of the isophlorin core with O2 as well as those of the lone pairs of the inner nitrogen atoms of the porphyrin core to form hydrogen bonds with H2O2. The intriguing isophlorin-O2/porphyrin-H2O2 interconversion was accomplished by introducing methyl groups at the inner nitrogen atoms to minimize the difference of the Gibbs free energy between isophlorin-O2/porphyrin-H2O2 states and the Gibbs activation energy of the interconversion. On the basis of the kinetic and thermodynamic analysis on the isophlorin-O2/porphyrin-H2O2 interconversion using 1H NMR and UV-vis spectroscopies and DFT calculations, we propose the formation of a two-point hydrogen-bonding adduct between the N21, N23-dimethylated porphyrin and H2O2 as an intermediate.

18.
Inorg Chem ; 58(6): 3676-3682, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30810308

RESUMO

Stoichiometric electron-transfer (ET) oxidation of two diastereomeric µ-peroxo-µ-hydroxo dinuclear Co(III) complexes with tris(2-pyridylmethyl)amine (TPA) was examined to scrutinize the reaction mechanism of O2 evolution from the peroxo complexes, as seen in the final step in water oxidation by a Co(III)-TPA complex. The two isomeric Co(III)-peroxo complexes were synthesized and selectively isolated by recrystallization under different conditions. Although cyclic voltammograms of the two isomers in aqueous solutions showed one reversible wave at 1.1 V vs NHE at pH 2.0, two oxidation waves were observed at 1.0 and 1.4 V at pH 7.0 in the aqueous solutions, the latter of which is responsible for the O2-releasing process. At pH 7, one diastereomer showed higher reactivity than the other in O2 evolution, indicating the importance of structures of the µ-peroxo complexes in the reaction. In order to clarify the O2-evolving mechanism, we performed electron paramagnetic resonance (EPR) and resonance Raman (RR) measurements for characterizing one-electron oxidized species: The observed EPR and RR signals supported the formation of µ-superoxo-µ-hydroxo dinuclear Co(III) complexes; however, no characteristic difference was observed between two isomers in the EPR parameters including g values and superhyperfine coupling constants. ET-oxidation rate constants of the isomers were determined to be much faster than the O2-evolving rate constants, indicating that the O2-releasing step is the rate-determining step in the O2 evolution through the stoichiometric ET oxidation of the dinuclear Co(III)-µ-peroxo complexes. Therefore, the difference of reactivity in the O2 evolution for the two isomers should be derived from the thermodynamic stability of two-electron oxidized species of the dinuclear Co(III)-µ-peroxo complexes, µ-dioxygen-µ-hydroxo dinuclear Co(III) intermediates.

19.
Inorg Chem ; 57(21): 13929-13936, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351921

RESUMO

A new chromium(V)-oxo complex, [CrV(O)(6-COO--py-tacn)]2+ (1; 6-COO--py-tacn = 1-(6-carboxylato-2-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane), was synthesized and characterized to evaluate the reactivity of CrV(O) complexes in a hydrogen-atom transfer (HAT) reaction by comparing it with that of a previously reported CrV(O) complex, [CrV(O)(6-COO--tpa)]2+ (2; 6-COO--tpa = N, N-bis(2-pyridylmethyl)- N-(6-carboxylato-2-pyridylmethyl)amine). Definitive differences of these two CrV(O) complexes were observed in resonance Raman scatterings of the Cr-O bond (ν = 911 cm-1 for 1 and 951 cm-1 for 2) and the reduction potential (0.73 V vs SCE for 1 and 1.23 V for 2); this difference should be derived from that of the ligand bound at the trans position to the oxo ligand, a tertiary amino group in 1, and a pyridine nitrogen in 2. When we employed 9,10-dihydroanthracene as a substrate, the second-order rate constant ( k) of 1 was 4000 times smaller than that of 2. Plots of normalized k values for both complexes relative to bond dissociation energies (BDEs) of C-H bonds to be cleaved in several substrates showed a pair of parallel lines with slopes of -0.91 for 1 and -0.62 for 2, indicating that the HAT reactions by the two complexes proceed via almost the same transition states. Judging from estimated BDEs of CrIV(OH)/CrV(O) (85-87 kcal mol-1 for 1 and 92-94 kcal mol-1 for 2) and the activation barrier in the HAT reaction of DHA ( Ea = 7.9 kcal mol-1 for 1 and Ea = 4.8 kcal mol-1 for 2), the reactivity of CrV(O) complexes in HAT reactions depends on the energy level of the reactant state rather than the product state.

20.
Inorg Chem ; 57(12): 7180-7190, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29847103

RESUMO

We report homogeneous electrocatalytic and photocatalytic H2 evolution using two Ni(II) complexes with S2N2-type tetradentate ligands bearing two different sizes of chelate rings as catalysts. A Ni(II) complex with a five-membered SC2S-Ni chelate ring (1) exhibited higher activity than that with a six-membered SC3S-Ni chelate ring (2) in both electrocatalytic and photocatalytic H2 evolution despite both complexes showing the same reduction potentials. A stepwise reduction of the Ni center from Ni(II) to Ni(0) was observed in the electrochemical measurements; the first reduction is a pure electron transfer reaction to form a Ni(I) complex as confirmed by electron spin resonance measurements, and the second is a 1e-/1H+ proton-coupled electron transfer reaction to afford a putative Ni(II)-hydrido (NiII-H) species. We also clarified that Ni(II) complexes can act as homogeneous catalysts in the electrocatalytic H2 evolution, in which complex 1 exhibited higher reactivity than that of 2. In the photocatalytic system using [Ru(bpy)3]2+ as a photosensitizer and sodium ascorbate as a reductant, complex 1 with the five-membered chelate ring also showed higher catalytic activity than that of 2 with the six-membered chelate ring, although the rates of photoinduced electron-transfer processes were comparable. The Ni-H bond cleavage in the putative NiII-H intermediate should be involved in the rate-limiting step as evidenced by kinetic isotope effects observed in both photocatalytic and electrocatalytic H2 evolution. Kinetic analysis and density functional theory calculations indicated that the difference in H2 evolution activity between the two complexes was derived from that of activation barriers of the reactions between the NiII-H intermediates and proton, which is consistent with the fact that increase of proton concentration accelerates the H2 evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...