Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704063

RESUMO

In this study, we analyzed the pectin structure within the pulp of cassava. Cassava pectin, derived from cassava pulp treatment at 120 °C for 90 min, was separated into four fractions (CP-P, CP-SD1, CP-SD2F, and CP-SD2R) based on variations in water solubility, electrical properties, and molecular weights. Sugar composition analysis demonstrated an abundance of homogalacturonan (HG) in CP-P and CP-SD2F, rhamnogalacturonan I (RG-I) in CP-SD2R, and neutral sugars in CP-SD1. Because RG-I possesses a complex structure, we analyzed CP-SD2R using various pectinolytic enzymes. Galactose was the major sugar in CP-SD2R accounting for 49 %, of which 65 % originated from arabinogalactan I, 9 % from galactose and galactooligosaccharides, 5 % from arabinogalactan II, and 11 % from galactoarabinan. Seventy-four percent of arabinose in CP-SD2R was present as galactoarabinan. The methylation (DM) and acetylation (DAc) degrees of cassava pectin were 11 and 15 %, respectively. The HG and RG-I regions exhibited DAc values of 5 and 44 %, respectively, signifying the high DAc of RG-I compared to HG. Information derived from the structural analysis of cassava pectin will enable efficient degradation of pectin and cellulose, leading to the use of cassava pulp as a raw material for biorefineries.


Assuntos
Manihot , Pectinas , Manihot/química , Pectinas/química , Fracionamento Químico , Peso Molecular , Poligalacturonase/química , Poligalacturonase/metabolismo , Metilação , Solubilidade
2.
Enzyme Microb Technol ; 150: 109894, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489047

RESUMO

Aspergillus oryzae is a safe microorganism that is commonly used in food production. We constructed a self-cloning vector capable of high expression in A. oryzae. Using the vector, three putative pectin methylesterase (PME) genes belonging to Carbohydrate Esterase family 8 derived from A. oryzae were expressed, and several characteristics of the gene products were examined. The effects of temperature and pH on the three enzymes (AoPME1, 2, and 3) were similar, with optimal reaction temperatures of 50 - 60 °C and optimal reaction pH range of 5 - 6. The specific activities of AoPME1, 2, and 3 for apple pectin were significantly different (34, 7,601, and 2 U/mg, respectively). When the substrate specificity was examined, AoPME1 showed high activity towards pectin derived from soybean and pea. Although AoPME2 showed little activity towards these pectins, it showed very high activity towards apple- and citrus-derived pectins. AoPME3 showed low specific activity towards all substrates tested. Sugar composition analysis revealed that apple- and citrus-derived pectins were rich in homogalacturonan, while soybean- and pea-derived pectins were rich in xylogalacturonan. When pea pectin was treated with endo-polygalacturonase or endo-xylogalacturonase in the presence of each PME, specific synergistic actions were observed (endo-polygalacturonase with AoPME1 or AoPME2 and endo-xylogalacturonase with AoPME1 or AoPME3). Thus, AoPME1 and AoPME3 hydrolyzed the methoxy group in xylogalacturonan. This is the first report of this activity in microbial enzymes. Our findings on the substrate specificity of PMEs should lead to the determination of the distribution of methoxy groups in pectin and the development of new applications in the field of food manufacturing.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Hidrolases de Éster Carboxílico/genética , Vetores Genéticos , Ácidos Hexurônicos , Pectinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...