Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(3): 679-691, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346438

RESUMO

PURPOSE: Cancer immunotherapies (CITs) have revolutionized the treatment of certain cancers, but many patients fail to respond or relapse from current therapies, prompting the need for new CIT agents. CD8+ T cells play a central role in the activity of many CITs, and thus, the rapid imaging of CD8+ cells could provide a critical biomarker for new CIT agents. However, existing 89Zr-labeled CD8 PET imaging reagents exhibit a long circulatory half-life and high radiation burden that limit potential applications such as same-day and longitudinal imaging. METHODS: To this end, we discovered and developed a 13-kDa single-domain antibody (VHH5v2) against human CD8 to enable high-quality, same-day imaging with a reduced radiation burden. To enable sensitive and rapid imaging, we employed a site-specific conjugation strategy to introduce an 18F radiolabel to the VHH. RESULTS: The anti-CD8 VHH, VHH5v2, demonstrated binding to a membrane distal epitope of human CD8 with a binding affinity (KD) of 500 pM. Subsequent imaging experiments in several xenografts that express varying levels of CD8 demonstrated rapid tumor uptake and fast clearance from the blood. High-quality images were obtained within 1 h post-injection and could quantitatively differentiate the tumor models based on CD8 expression level. CONCLUSION: Our work reveals the potential of this anti-human CD8 VHH [18F]F-VHH5v2 to enable rapid and specific imaging of CD8+ cells in the clinic.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Linfócitos T CD8-Positivos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Linhagem Celular Tumoral
2.
J Med Chem ; 65(5): 4085-4120, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35184554

RESUMO

The dramatic increase in the prevalence of multi-drug resistant Gram-negative bacterial infections and the simultaneous lack of new classes of antibiotics is projected to result in approximately 10 million deaths per year by 2050. We report on efforts to target the Gram-negative ATP-binding cassette (ABC) transporter MsbA, an essential inner membrane protein that transports lipopolysaccharide from the inner leaflet to the periplasmic face of the inner membrane. We demonstrate the improvement of a high throughput screening hit into compounds with on-target single digit micromolar (µM) minimum inhibitory concentrations against wild-type uropathogenic Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. A 2.98 Å resolution X-ray crystal structure of MsbA complexed with an inhibitor revealed a novel mechanism for inhibition of an ABC transporter. The identification of a fully encapsulated membrane binding site in Gram-negative bacteria led to unique physicochemical property requirements for wild-type activity.


Assuntos
Escherichia coli , Lipopolissacarídeos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia
3.
FEBS Lett ; 594(23): 3767-3775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978974

RESUMO

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/classificação , Domínios Proteicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Dobramento de Proteína
4.
Science ; 367(6483): 1224-1230, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32079680

RESUMO

Cluster of differentiation 20 (CD20) is a B cell membrane protein that is targeted by monoclonal antibodies for the treatment of malignancies and autoimmune disorders but whose structure and function are unknown. Rituximab (RTX) has been in clinical use for two decades, but how it activates complement to kill B cells remains poorly understood. We obtained a structure of CD20 in complex with RTX, revealing CD20 as a compact double-barrel dimer bound by two RTX antigen-binding fragments (Fabs), each of which engages a composite epitope and an extensive homotypic Fab:Fab interface. Our data suggest that RTX cross-links CD20 into circular assemblies and lead to a structural model for complement recruitment. Our results further highlight the potential relevance of homotypic Fab:Fab interactions in targeting oligomeric cell-surface markers.


Assuntos
Antígenos CD20/química , Rituximab/química , Antígenos CD20/imunologia , Proteínas do Sistema Complemento/imunologia , Microscopia Crioeletrônica , Humanos , Fragmentos Fab das Imunoglobulinas/química , Conformação Proteica , Multimerização Proteica , Rituximab/imunologia
5.
Cell Chem Biol ; 27(3): 306-313.e4, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732432

RESUMO

Voltage-gated sodium (Nav) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype Nav1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate Nav1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of Nav1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on Nav channels.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Sondas Moleculares/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Venenos de Aranha/farmacologia , Sítios de Ligação/efeitos dos fármacos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Sondas Moleculares/síntese química , Sondas Moleculares/química , Canal de Sódio Disparado por Voltagem NAV1.7/química , Processos Fotoquímicos , Venenos de Aranha/síntese química , Venenos de Aranha/química
6.
Methods Mol Biol ; 2025: 389-402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267463

RESUMO

Integral membrane proteins (MP) are implicated in many disease processes and are the primary targets of numerous marketed drugs. Despite recent advances in the areas of MP solubilization, stabilization, and reconstitution, it remains a time-consuming task to identify the combination of constructs and purification conditions that will enable MP structure-function studies outside of the lipid bilayer. In this chapter, we describe a strategy for rapidly identifying and optimizing the solubilization and purification conditions for nearly any recombinant MP, based on the use of a noninvasive fluorescent probe (His-Glow) that specifically binds to the common hexahistidine affinity tag of expressed targets. This His-Glow approach permits fluorescent size-exclusion chromatography (FSEC) without the need for green fluorescent protein (GFP) fusion. A two-stage detergent screening strategy is employed at the solubilization stage, whereby appropriate detergent families are identified first, followed by optimization within these families. Screening up to 96 unique combinations of solubilization conditions and constructs can be achieved in less than 24 h. At the outset of each new project, we screen six different detergents for each construct and the subsequent implementation of a simple thermostability challenge further aids in the identification of constructs and conditions suitable for large-scale production. Our strategy streamlines the parallel optimization of appropriate production conditions for multiple MP targets to rapidly enable downstream biochemical, immunization, or structural studies.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Cromatografia em Gel , Proteínas de Fluorescência Verde/genética , Histidina/química , Histidina/metabolismo , Humanos , Proteínas de Membrana/genética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Proteínas Recombinantes/genética
7.
Elife ; 82019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31237236

RESUMO

Outer membrane proteins (OMPs) in Gram-negative bacteria dictate permeability of metabolites, antibiotics, and toxins. Elucidating the structure-function relationships governing OMPs within native membrane environments remains challenging. We constructed a diverse library of >3000 monoclonal antibodies to assess the roles of extracellular loops (ECLs) in LptD, an essential OMP that inserts lipopolysaccharide into the outer membrane of Escherichia coli. Epitope binning and mapping experiments with LptD-loop-deletion mutants demonstrated that 7 of the 13 ECLs are targeted by antibodies. Only ECLs inaccessible to antibodies were required for the structure or function of LptD. Our results suggest that antibody-accessible loops evolved to protect key extracellular regions of LptD, but are themselves dispensable. Supporting this hypothesis, no α-LptD antibody interfered with essential functions of LptD. Our experimental workflow enables structure-function studies of OMPs in native cellular environments, provides unexpected insight into LptD, and presents a method to assess the therapeutic potential of antibody targeting.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Animais , Antibacterianos/farmacologia , Sítios de Ligação , Mapeamento de Epitopos , Epitopos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Camundongos Endogâmicos BALB C , Estrutura Secundária de Proteína , Ratos Sprague-Dawley , Relação Estrutura-Atividade
9.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661758

RESUMO

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/ultraestrutura , Peptídeos/metabolismo , Venenos de Aranha/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Células HEK293 , Humanos , Ativação do Canal Iônico , Peptídeos/toxicidade , Domínios Proteicos , Venenos de Aranha/toxicidade , Aranhas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-30104274

RESUMO

There is a critical need for new antibacterial strategies to counter the growing problem of antibiotic resistance. In Gram-negative bacteria, the outer membrane (OM) provides a protective barrier against antibiotics and other environmental insults. The outer leaflet of the outer membrane is primarily composed of lipopolysaccharide (LPS). Outer membrane biogenesis presents many potentially compelling drug targets as this pathway is absent in higher eukaryotes. Most proteins involved in LPS biosynthesis and transport are essential; however, few compounds have been identified that inhibit these proteins. The inner membrane ABC transporter MsbA carries out the first essential step in the trafficking of LPS to the outer membrane. We conducted a biochemical screen for inhibitors of MsbA and identified a series of quinoline compounds that kill Escherichia coli through inhibition of its ATPase and transport activity, with no loss of activity against clinical multidrug-resistant strains. Identification of these selective inhibitors indicates that MsbA is a viable target for new antibiotics, and the compounds we identified serve as useful tools to further probe the LPS transport pathway in Gram-negative bacteria.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Antibacterianos/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Escherichia coli/efeitos dos fármacos
11.
Nat Chem Biol ; 14(9): 902, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29728602

RESUMO

The version of this article originally published contained older versions of the Life Sciences Reporting Summary and the Supplementary Text and Figures. The error has been corrected in the HTML and PDF versions of the article.

12.
Nature ; 557(7704): 196-201, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720648

RESUMO

The movement of core-lipopolysaccharide across the inner membrane of Gram-negative bacteria is catalysed by an essential ATP-binding cassette transporter, MsbA. Recent structures of MsbA and related transporters have provided insights into the molecular basis of active lipid transport; however, structural information about their pharmacological modulation remains limited. Here we report the 2.9 Å resolution structure of MsbA in complex with G907, a selective small-molecule antagonist with bactericidal activity, revealing an unprecedented mechanism of ABC transporter inhibition. G907 traps MsbA in an inward-facing, lipopolysaccharide-bound conformation by wedging into an architecturally conserved transmembrane pocket. A second allosteric mechanism of antagonism occurs through structural and functional uncoupling of the nucleotide-binding domains. This study establishes a framework for the selective modulation of ABC transporters and provides rational avenues for the design of new antibiotics and other therapeutics targeting this protein family.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Quinolinas/química , Quinolinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Alostérica/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Escherichia coli/química , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos
13.
Sci Rep ; 8(1): 7136, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740124

RESUMO

Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP ß-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of ß-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/imunologia , Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Imunização , Conformação Proteica , Dobramento de Proteína , Transporte Proteico/genética , Transporte Proteico/imunologia , Vacinação
14.
Nat Chem Biol ; 14(6): 582-590, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29632413

RESUMO

Regeneration of the adult intestinal epithelium is mediated by a pool of cycling stem cells, which are located at the base of the crypt, that express leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5). The Frizzled (FZD) 7 receptor (FZD7) is enriched in LGR5+ intestinal stem cells and plays a critical role in their self-renewal. Yet, drug discovery approaches and structural bases for targeting specific FZD isoforms remain poorly defined. FZD proteins interact with Wnt signaling proteins via, in part, a lipid-binding groove on the extracellular cysteine-rich domain (CRD) of the FZD receptor. Here we report the identification of a potent peptide that selectively binds to the FZD7 CRD at a previously uncharacterized site and alters the conformation of the CRD and the architecture of its lipid-binding groove. Treatment with the FZD7-binding peptide impaired Wnt signaling in cultured cells and stem cell function in intestinal organoids. Together, our data illustrate that targeting the lipid-binding groove holds promise as an approach for achieving isoform-selective FZD receptor inhibition.


Assuntos
Receptores Frizzled/antagonistas & inibidores , Receptores Frizzled/metabolismo , Intestinos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Sítios de Ligação , Células CHO , Membrana Celular/metabolismo , Cricetulus , Cristalografia por Raios X , Descoberta de Drogas , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Intestinos/citologia , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Regeneração , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/patologia , Ressonância de Plasmônio de Superfície , Via de Sinalização Wnt
15.
Artigo em Inglês | MEDLINE | ID: mdl-29339384

RESUMO

The outer membrane is an essential structural component of Gram-negative bacteria that is composed of lipoproteins, lipopolysaccharides, phospholipids, and integral ß-barrel membrane proteins. A dedicated machinery, called the Lol system, ensures proper trafficking of lipoproteins from the inner to the outer membrane. The LolCDE ABC transporter is the inner membrane component, which is essential for bacterial viability. Here, we report a novel pyrrolopyrimidinedione compound, G0507, which was identified in a phenotypic screen for inhibitors of Escherichia coli growth followed by selection of compounds that induced the extracytoplasmic σE stress response. Mutations in lolC, lolD, and lolE conferred resistance to G0507, suggesting LolCDE as its molecular target. Treatment of E. coli cells with G0507 resulted in accumulation of fully processed Lpp, an outer membrane lipoprotein, in the inner membrane. Using purified protein complexes, we found that G0507 binds to LolCDE and stimulates its ATPase activity. G0507 still binds to LolCDE harboring a Q258K substitution in LolC (LolCQ258K), which confers high-level resistance to G0507 in vivo but no longer stimulates ATPase activity. Our work demonstrates that G0507 has significant promise as a chemical probe to dissect lipoprotein trafficking in Gram-negative bacteria.


Assuntos
Bactérias Gram-Negativas/metabolismo , Lipoproteínas/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Lipoproteínas/genética , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética
16.
Nat Commun ; 8: 14644, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248292

RESUMO

Voltage-gated Kv1.3 and Ca2+-dependent KCa3.1 are the most prevalent K+ channels expressed by human and rat T cells. Despite the preferential upregulation of Kv1.3 over KCa3.1 on autoantigen-experienced effector memory T cells, whether Kv1.3 is required for their induction and function is unclear. Here we show, using Kv1.3-deficient rats, that Kv1.3 is involved in the development of chronically activated antigen-specific T cells. Several immune responses are normal in Kv1.3 knockout (KO) rats, suggesting that KCa3.1 can compensate for the absence of Kv1.3 under these specific settings. However, experiments with Kv1.3 KO rats and Kv1.3 siRNA knockdown or channel-specific inhibition of human T cells show that maximal T-cell responses against autoantigen or repeated tetanus toxoid stimulations require both Kv1.3 and KCa3.1. Finally, our data also suggest that T-cell dependency on Kv1.3 or KCa3.1 might be irreversibly modulated by antigen exposure.


Assuntos
Epitopos/imunologia , Memória Imunológica , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canal de Potássio Kv1.3/metabolismo , Linfócitos T/metabolismo , Animais , Técnicas de Silenciamento de Genes , Humanos , Imunidade/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Ativação Linfocitária/imunologia , Fenótipo , Bloqueadores dos Canais de Potássio/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos , Linfócitos T/efeitos dos fármacos
17.
Curr Opin Struct Biol ; 45: 74-84, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27988421

RESUMO

Voltage-gated sodium (Nav) channels initiate and propagate action potentials in excitable cells, and are frequently dysregulated or mutated in human disease. Despite decades of intense physiological and biophysical research, eukaryotic Nav channels have so far eluded high-resolution structure determination because of their biochemical complexity. Recently, simpler bacterial voltage-gated sodium (BacNav) channels have provided templates to understand the structural basis of voltage-dependent activation, inactivation, ion selectivity, and drug block in eukaryotic Nav and related voltage-gated calcium (Cav) channels. Further breakthroughs employing BacNav channels have also enabled visualization of bound small molecule modulators that can guide the rational design of next generation therapeutics. This review will highlight the emerging structural biology of BacNav channels and its contribution to our understanding of the gating, ion selectivity, and pharmacological regulation of eukaryotic Nav (and Cav) channels.


Assuntos
Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Porosidade
18.
Science ; 350(6267): aac5464, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680203

RESUMO

Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Sequência de Aminoácidos , Membrana Celular/química , Cristalização/métodos , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Percepção da Dor/efeitos dos fármacos , Engenharia de Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Structure ; 23(4): 713-23, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25752540

RESUMO

Bacterial ATP-binding cassette (ABC) importers play critical roles in nutrient acquisition and are potential antibacterial targets. However, structural bases for their inhibition are poorly defined. These pathways typically rely on substrate binding proteins (SBPs), which are essential for substrate recognition, delivery, and transporter function. We report the crystal structure of a Staphylococcus aureus SBP for Mn(II), termed MntC, in complex with FabC1, a potent antibody inhibitor of the MntABC pathway. This pathway is essential and highly expressed during S. aureus infection and facilitates the import of Mn(II), a critical cofactor for enzymes that detoxify reactive oxygen species (ROS). Structure-based functional studies indicate that FabC1 sterically blocks a structurally conserved surface of MntC, preventing its interaction with the MntB membrane importer and increasing wild-type S. aureus sensitivity to oxidative stress by more than 10-fold. The results define an SBP blocking mechanism as the basis for ABC importer inhibition by an engineered antibody fragment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Fragmentos de Imunoglobulinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/imunologia , Sítios de Ligação , Fragmentos de Imunoglobulinas/química , Dados de Sequência Molecular , Ligação Proteica , Staphylococcus aureus/enzimologia
20.
J Biol Chem ; 288(50): 36168-78, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24189067

RESUMO

Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Receptores de Glucagon/química , Receptores de Glucagon/imunologia , Regulação Alostérica , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Espaço Extracelular/metabolismo , Humanos , Masculino , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores de Glucagon/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...