Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Mol Med ; 16(9): 779-792, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27894243

RESUMO

Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease resulting in infant mortality. SMA is caused by genetic deletion or mutation in the survival of motor neuron 1 (SMN1) gene, which results in reduced levels of the survival of motor neuron (SMN) protein. SMN protein deficiency preferentially affects α- motor neurons, leading to their degeneration and subsequent atrophy of limb and trunk muscles, progressing to death in severe forms of the disease. More recent studies have shown that SMN protein depletion is detrimental to the functioning of other tissues including skeletal muscle, heart, autonomic and enteric nervous systems, metabolic/endocrine (e.g. pancreas), lymphatic, bone and reproductive system. In this review, we summarize studies discussing SMN protein's function in various cell and tissue types and their involvement in the context of SMA disease etiology. Taken together, these studies indicate that SMA is a multi-organ disease, which suggests that truly effective disease intervention may require body-wide correction of SMN protein levels.


Assuntos
Neurônios Motores/patologia , Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/patologia , Animais , Atrofia/genética , Atrofia/metabolismo , Atrofia/patologia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
Curr Mol Med ; 13(7): 1160-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23514457

RESUMO

Spinal muscular atrophy (SMA) is caused by mutations that reduce the level of the survival motor neuron protein (SMN) resulting in death of alpha-motor neurons, yet it is unclear why these cells are preferentially affected by a reduction in this ubiquitously-expressed protein. In mouse models of SMA, one of the earliest events detected is defects at the neuromuscular junction (NMJ). Although NMJs are established at a normal frequency, there are structural as well as functional perturbations and a lack of maturation of the primitive synapse. These early defects are followed by loss of the NMJ, denervation of the muscle and onset of muscle atrophy. In this review, we discuss our current understanding of the contribution of NMJ dysfunction in SMA disease pathogenesis, and also provide an overview of therapies currently under preclinical and clinical development for treatment of SMA.


Assuntos
Atrofia Muscular Espinal/genética , Degeneração Neural/genética , Junção Neuromuscular/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Mutação , Degeneração Neural/patologia , Junção Neuromuscular/patologia , Sinapses/patologia
3.
Hum Mol Genet ; 19(7): 1211-20, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20053670

RESUMO

The molecular mechanisms regulating expression of utrophin A are of therapeutic interest since upregulating its expression at the sarcolemma can compensate for the lack of dystrophin in animal models of Duchenne Muscular Dystrophy (DMD). The 5'-UTR of utrophin A has been previously shown to drive cap-independent internal ribosome entry site (IRES)-mediated translation in response to muscle regeneration and glucocorticoid treatment. To determine whether the utrophin A IRES displays tissue specific activity, we generated transgenic mice harboring control (CMV/betaGAL/CAT) or utrophin A 5'-UTR (CMV/betaGAL/UtrA/CAT) bicistronic reporter transgenes. Examination of multiple tissues from two CMV/betaGAL/UtrA/CAT lines revealed that the utrophin A 5'-UTR drives cap-independent translation of the reporter gene exclusively in skeletal muscles and no other examined tissues. This expression pattern suggested that skeletal muscle-specific factors are involved in IRES-mediated translation of utrophin A. We performed RNA-affinity chromatography experiments combined with mass spectrometry to identify trans-factors that bind the utrophin A 5'-UTR and identified eukaryotic elongation factor 1A2 (eEF1A2). UV-crosslinking experiments confirmed the specificity of this interaction. Regions of the utrophin A 5'-UTR that bound eEF1A2 also mediated cap-independent translation in C2C12 muscle cells. Cultured cells lacking eEF1A2 had reduced IRES activity compared with cells overexpressing eEF1A2. Together, these results suggest an important role for eEF1A2 in driving cap-independent translation of utrophin A in skeletal muscle. The trans-factors and signaling pathways driving skeletal-muscle specific IRES-mediated translation of utrophin A could provide unique targets for developing pharmacological-based DMD therapies.


Assuntos
Regiões 5' não Traduzidas , Fator 1 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Utrofina/genética , Animais , Sítios de Ligação , Células Cultivadas , Regulação da Expressão Gênica , Genes Reporter , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Ribossomos
4.
Brain Res ; 1226: 33-8, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18619576

RESUMO

The trigeminal ganglion (TG) and mesencephalic trigeminal tract nucleus (Mes5) were investigated in wild type and dystonia musculorum (dt) mice to study the effect of dystonin deficiency on primary sensory neurons in the trigeminal nervous system. At postnatal day 14, the number of TG neurons was markedly decreased in dt mice when compared to wild type mice (43.1% reduction). In addition, dystonin disruption decreased the number of sensory neurons which bound to isolectin B4, and contained calcitonin gene-related peptide or high-affinity nerve growth factor receptor TrkA. Immunohistochemistry for caspase-3 demonstrated that dystonin deficiency induced excess cell death of TG neurons during the early postnatal period. In contrast, Mes5 neurons were barely affected in dt mice. These data together suggest that dystonin is necessary for survival of nociceptors but not proprioceptors in the trigeminal nervous system.


Assuntos
Proteínas do Citoesqueleto/deficiência , Proteínas do Tecido Nervoso/deficiência , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglio Trigeminal/citologia , Núcleos do Trigêmeo/citologia , Animais , Proteínas de Transporte , Caspase 3/metabolismo , Distonina , Regulação da Expressão Gênica/genética , Lectinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Receptor trkA/metabolismo
5.
Brain Res ; 1129(1): 142-6, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17156752

RESUMO

The anterior part of the tongue was examined in wild type and dystonia musculorum mice to assess the effect of dystonin loss on fungiform papillae. In the mutant mouse, the density of fungiform papillae and their taste buds was severely decreased when compared to wild type littermates (papilla, 67% reduction; taste bud, 77% reduction). The mutation also reduced the size of these papillae (17% reduction) and taste buds (29% reduction). In addition, immunohistochemical analysis demonstrated that the dystonin mutation reduced the number of PGP 9.5 and calbindin D28k-containing nerve fibers in fungiform papillae. These data together suggest that dystonin is required for the innervation and development of fungiform papillae and taste buds.


Assuntos
Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Proteínas do Tecido Nervoso/genética , Papilas Gustativas/anormalidades , Papilas Gustativas/metabolismo , Distúrbios do Paladar/metabolismo , Língua/anormalidades , Língua/metabolismo , Animais , Calbindina 1 , Calbindinas , Nervo da Corda do Tímpano/anormalidades , Nervo da Corda do Tímpano/metabolismo , Nervo da Corda do Tímpano/fisiopatologia , Modelos Animais de Doenças , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Distonina , Gânglio Geniculado/anormalidades , Gânglio Geniculado/metabolismo , Gânglio Geniculado/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mutação/genética , Proteína G de Ligação ao Cálcio S100/metabolismo , Células Receptoras Sensoriais/anormalidades , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiopatologia , Papilas Gustativas/fisiopatologia , Distúrbios do Paladar/genética , Distúrbios do Paladar/fisiopatologia , Língua/fisiopatologia , Ubiquitina Tiolesterase/metabolismo
6.
Neuroscience ; 137(2): 531-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16289886

RESUMO

The vagal and glossopharyngeal sensory ganglia and their peripheral tissues were examined in wild type and dystonia musculorum mice to assess the effect of dystonin loss of function on chemoreceptive neurons. In the mutant mouse, the number of vagal and glossopharyngeal sensory neurons was severely decreased (70% reduction) when compared with wild type littermates. The mutation also reduced the size of the circumvallate papilla (45% reduction) and the number of taste buds (89% reduction). In addition, immunohistochemical analysis demonstrated that the dystonin mutation reduced the number of PGP 9.5-, calcitonin gene-related peptide-, P2X3 receptor- and tyrosine hydroxylase-containing neurons. Their peripheral endings also decreased in the taste bud and epithelium of circumvallate papillae. These data together suggest that the survival of vagal and glossopharyngeal sensory neurons is dependent upon dystonin.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/fisiologia , Gânglios Sensitivos/anormalidades , Nervo Glossofaríngeo/anormalidades , Proteínas do Tecido Nervoso/fisiologia , Neurônios Aferentes/metabolismo , Nervo Vago/anormalidades , Animais , Animais Recém-Nascidos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Transporte/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Células Quimiorreceptoras/anormalidades , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/patologia , Proteínas do Citoesqueleto/genética , Regulação para Baixo/genética , Distonina , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/patologia , Nervo Glossofaríngeo/metabolismo , Nervo Glossofaríngeo/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/patologia , Gânglio Nodoso/anormalidades , Gânglio Nodoso/metabolismo , Gânglio Nodoso/patologia , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X3 , Células Receptoras Sensoriais/anormalidades , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Paladar/genética , Papilas Gustativas/anormalidades , Papilas Gustativas/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina Tiolesterase/metabolismo , Nervo Vago/metabolismo , Nervo Vago/patologia
7.
Hum Mol Genet ; 10(23): 2727-36, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11726560

RESUMO

Proximal spinal muscular atrophy (SMA) is caused by mutations in the survival motor neuron gene (SMN1). In humans, two nearly identical copies of SMN exist and differ only by a single non-polymorphic C-->T nucleotide transition in exon 7. SMN1 contains a 'C' nucleotide at the +6 position of exon 7 and produces primarily full-length SMN transcripts, whereas SMN2 contains a 'T' nucleotide and produces high levels of a transcript that lacks exon 7 and a low level of full-length SMN transcripts. All SMA patients lack a functional SMN1 gene but retain at least one copy of SMN2, suggesting that the low level of full-length protein produced from SMN2 is sufficient for all cell types except motor neurons. The murine Smn gene is not duplicated or alternatively spliced. It resembles SMN1 in that the critical exon 7 +6 'C' nucleotide is conserved. We have generated Smn minigenes containing either wild-type Smn exon 7 or an altered exon 7 containing the C-->T nucleotide transition to mimic SMN2. When expressed in cultured cells or transgenic mice, the wild-type minigene produced only full-length transcripts whereas the modified minigene alternatively spliced exon 7. Furthermore, Smn exon 7 contains a critical AG-rich exonic splice enhancer sequence (ESE) analogous to the human ESE within SMN exon 7, and subtle mutations within the mESE caused a variation in Smn transcript levels. In summary, we show for the first time that the murine Smn locus can be induced to alternatively splice exon 7. These results demonstrate that SMN protein levels can be varied in the mouse by the introduction of specific mutations at the endogenous Smn locus and thereby lay the foundation for developing animals that closely 'resemble' SMA patients.


Assuntos
Processamento Alternativo , Éxons/genética , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Animais , Composição de Bases/genética , Sequência de Bases , Células COS , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Elementos Facilitadores Genéticos/genética , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/metabolismo , Plasmídeos/genética , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas do Complexo SMN , Homologia de Sequência do Ácido Nucleico , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor , Distribuição Tecidual , Transcrição Gênica , Células Tumorais Cultivadas
8.
Hum Mol Genet ; 10(17): 1819-27, 2001 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11532991

RESUMO

Here, we describe a novel spontaneous autosomal recessive mutation in the mouse that is characterized by skeletal and cardiac muscle degeneration. We have named this mutant degenerating muscle (dmu). At birth, mutant mice are indistinguishable from their normal littermates. Thereafter, the disease progresses rapidly and a phenotype is first observed at approximately 11 days after birth; the dmu mice are weak and have great difficulty in moving. The principal cause of the lack of mobility is muscle atrophy and wasting in the hindquarters. Affected mice die at or around the time of weaning of unknown causes. Histopathological observations and ultrastructural analysis revealed muscle degeneration in both skeletal and cardiac muscle, but no abnormalities in sciatic nerves. Using linkage analysis, we have mapped the dmu locus to the distal portion of mouse chromosome 15 in a region syntenic to human chromosome 12q13. Interestingly, scapuloperoneal muscular dystrophy (SPMD) in humans has been linked to this region. SPMD patients with associated cardiomyopathy have also been described in the past. Initial analysis of candidate genes on mouse chromosome 15 reveal that although intact transcripts for Scn8a, the gene encoding the sodium channel 8a subunit, are present in dmu mice, their levels are dramatically reduced. Furthermore, genetic complementation crosses between dmu and med (mutation in Scn8a) mice revealed that they are allelic. Our results suggest that at least a portion of the dmu phenotype is caused by a down-regulation of Scn8a, making dmu a new allele of Scn8a.


Assuntos
Camundongos Mutantes/genética , Mutação , Proteínas do Tecido Nervoso/genética , Doenças Neuromusculares/genética , Canais de Sódio/genética , Alelos , Animais , Mapeamento Cromossômico , Cromossomos Humanos Par 12 , Cruzamentos Genéticos , Modelos Animais de Doenças , Homozigoto , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.6
9.
Am J Physiol Lung Cell Mol Physiol ; 281(1): L217-30, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11404265

RESUMO

cAMP and dexamethasone are known to modulate Na+ transport in epithelial cells. We investigated whether dibutyryl cAMP (DBcAMP) and dexamethasone modulate the mRNA expression of two key elements of the Na+ transport system in isolated rat alveolar epithelial cells: alpha-, beta-, and gamma-subunits of the epithelial Na+ channel (ENaC) and the alpha1- and beta1-subunits of Na+-K+-ATPase. The cells were treated for up to 48 h with DBcAMP or dexamethasone to assess their long-term impact on the steady-state level of ENaC and Na+-K+-ATPase mRNA. DBcAMP induced a twofold transient increase of alpha-ENaC and alpha1-Na+-K+-ATPase mRNA that peaked after 8 h of treatment. It also upregulated beta- and gamma-ENaC mRNA but not beta1-Na+-K+-ATPase mRNA. Dexamethasone augmented alpha-ENaC mRNA expression 4.4-fold in cells treated for 24 h and also upregulated beta- and gamma-ENaC mRNA. There was a 1.6-fold increase at 8 h of beta1-Na+-K+-ATPase mRNA but no significant modulation of alpha1-Na+-K+-ATPase mRNA expression. Because DBcAMP and dexamethasone did not increase the stability of alpha-ENaC mRNA, we cloned 3.2 kb of the 5' sequences flanking the mouse alpha-ENaC gene to study the impact of DBcAMP and dexamethasone on alpha-ENaC promoter activity. The promoter was able to drive basal expression of the chloramphenicol acetyltransferase (CAT) reporter gene in A549 cells. Dexamethasone increased the activity of the promoter by a factor of 5.9. To complete the study, the physiological effects of DBcAMP and dexamethasone were investigated by measuring transepithelial current in treated and control cells. DBcAMP and dexamethasone modulated transepithelial current with a time course reminiscent of the profile observed for alpha-ENaC mRNA expression. DBcAMP had a greater impact on transepithelial current (2.5-fold increase at 8 h) than dexamethasone (1.8-fold increase at 24 h). These results suggest that modulation of alpha-ENaC and Na+-K+-ATPase gene expression is one of the mechanisms that regulates Na+ transport in alveolar epithelial cells.


Assuntos
AMP Cíclico/farmacologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Isoenzimas/metabolismo , Alvéolos Pulmonares/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Bucladesina/farmacologia , Células Cultivadas , Clonagem Molecular , Combinação de Medicamentos , Condutividade Elétrica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Canais Epiteliais de Sódio , Isoenzimas/genética , Masculino , Regiões Promotoras Genéticas/fisiologia , Biossíntese de Proteínas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/genética , Canais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Transcrição Gênica/fisiologia
10.
J Comp Neurol ; 432(2): 155-68, 2001 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11241383

RESUMO

We have investigated the fate of different neurotrophin-responsive subpopulations of dorsal root ganglion neurons in dystonia musculorum (dt) mice. These mice have a null mutation in the cytoskeletal linker protein, dystonin. Dystonin is expressed by all sensory neurons and cross links actin filaments, intermediate filaments, and microtubules. The dt mice undergo massive sensory neurodegeneration postnatally and die at around 4 weeks of age. We assessed the surviving and degenerating neuronal populations by comparing the dorsal root ganglion (DRG) neurons and central and peripheral projections in dt mice and wildtype mice. Large, neurofilament-H-positive neurons, many of which are muscle afferents and are neurotrophin-3 (NT-3)-responsive, were severely decreased in number in dt DRGs. The loss of muscle afferents was correlated with a degeneration of muscle spindles in skeletal muscle. Nerve growth factor (NGF)-responsive populations, which were visualized using calcitonin gene-related peptide and p75, appeared qualitatively normal in the lumbar spinal cord, DRG, and hindlimb skin. In contrast, glial cell line-derived neurotrophic factor (GDNF)-responsive populations, which were visualized using the isolectin B-4 and thiamine monophosphatase, were severely diminished in the lumbar spinal cord, DRG, and hindlimb skin. Analysis of NT-3, NGF, and GDNF mRNA levels using semiquantitative reverse transcriptase-polymerase chain reaction revealed normal trophin synthesis in the peripheral targets of dt mice, arguing against decreased trophic synthesis as a possible cause of neuronal degeneration. Thus, the absence of dystonin results in the selective survival of NGF-responsive neurons and the postnatal degeneration of many NT-3- and GDNF-responsive neurons. Our results reveal that the loss of this ubiquitously expressed cytoskeletal linker has diverse effects on sensory subpopulations. Moreover, we show that dystonin is critical for the maintenance of certain DRG neurons, and its function may be related to neurotrophic support.


Assuntos
Proteínas de Transporte , Proteínas do Citoesqueleto/deficiência , Gânglios Espinais/metabolismo , Fusos Musculares/metabolismo , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/metabolismo , Neurotrofina 3/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Tamanho Celular/fisiologia , Distonia/genética , Distonina , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Lectinas/metabolismo , Camundongos , Camundongos Mutantes , Fusos Musculares/patologia , Fator de Crescimento Neural/metabolismo , Neurônios Aferentes/patologia , Monoéster Fosfórico Hidrolases/metabolismo
11.
Exp Cell Res ; 260(2): 304-12, 2000 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11035925

RESUMO

Whether drug-selectable genes can influence expression of the beta-globin gene linked to its LCR was assessed here. With the tkNeo gene placed in cis and used to select transfected cells, the beta-globin gene was expressed fourfold lower when it was positioned upstream of the LCR rather than downstream. This difference did not occur when the pgkPuro gene replaced tkNeo. Moreover, the beta-globin gene situated upstream of the LCR was transcribed without position effects when it was cotransfected with a pgkPuro-containing plasmid, whereas cotransfection with a tkNeo plasmid gave measurable position effects. Previous results from transfected cells selected via a linked tkNeo gene suggested that the 3' end of the beta-globin gene has no impact on LCR-enhanced expression. Here, removal of the 3' end of the beta-globin gene resulted in lower and much more variable expression in both transgenic mice and cells cotransfected with pgkPuro. Together, the results suggest that tkNeo, but not pgkPuro, can strongly influence expression of the beta-globin gene linked to its LCR. The findings could partly explain why data on beta-globin gene regulation obtained from transfected cells have often not agreed with those obtained using transgenic mice. Hence, one must be careful in choosing a drug-selectable gene for cell transfection studies.


Assuntos
Regulação da Expressão Gênica , Globinas/genética , Região de Controle de Locus Gênico , Neomicina/farmacologia , Fosfoglicerato Quinase/genética , Plasmídeos , Puromicina/farmacologia , Timidina Quinase/genética , Animais , Camundongos , Camundongos Transgênicos , Transfecção
12.
Dev Dyn ; 219(2): 216-25, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11002341

RESUMO

Several proteins belonging to the plakin family of cytoskeletal linker proteins have recently been identified, including dystonin/Bpag1 and plectin. These proteins are unique in their abilities to form bridges between different cytoskeletal elements through specialized modular domains. We have previously reported the cloning and partial characterization of Acf7, a novel member of the plakin family. More recently, the full-length cDNA for mouse Acf7 has been reported. Acf7 has a hybrid composition, with extended homology to dystonin/Bpag1 and plectin in the N-terminal half, and to dystrophin in the central and C-terminal half. Recent studies have demonstrated that Acf7 has functional actin and microtubule binding domains. Here, we describe the developmental expression profile for mouse Acf7. RNA in situ hybridization experiments revealed Acf7 transcripts in the dermomyotome and neural fold of day 8.5 mouse embryos. Later in development, Acf7 expression was predominant in neural and muscle tissues and was strongly up-regulated just before birth in type II alveolar cells of the lung. Altogether, our results suggest that Acf7 functions as a versatile cytoskeletal linker protein and plays an important role in neural, muscle, and lung development.


Assuntos
Encéfalo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/fisiologia , Proteínas dos Microfilamentos/genética , Músculos/fisiologia , Medula Espinal/fisiologia , Envelhecimento , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Embrionário e Fetal , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Camundongos , Camundongos Mutantes , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/fisiologia , Desenvolvimento Muscular , Músculos/embriologia , Especificidade de Órgãos , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/embriologia , Medula Espinal/crescimento & desenvolvimento
13.
Nat Biotechnol ; 18(7): 746-9, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10888842

RESUMO

An important issue in developmental biology is the identification of homeoprotein target genes. We have developed a strategy based on the internalization and nuclear addressing of exogenous homeodomains, using an engrailed homeodomain (EnHD) to screen an embryonic stem (ES) cell gene trap library. Eight integrated gene trap loci responded to EnHD. One is within the bullous pemphigoid antigen 1 (BPAG1) locus, in a region that interrupts two neural isoforms. By combining in vivo electroporation with organotypic cultures, we show that an already identified BPAG1 enhancer/promoter is differentially regulated by homeoproteins Hoxc-8 and Engrailed in the embryonic spinal cord and mesencephalon. This strategy can therefore be used for identifying and mutating homeoprotein targets. Because homeodomain third helices can internalize proteins, peptides, phosphopeptides, and antisense oligonucleotides, this strategy should be applicable to other intracellular targets for characterizing genetic networks involved in a large number of physiopathological states.


Assuntos
Proteínas de Transporte , Proteínas do Citoesqueleto , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso , Colágenos não Fibrilares , Análise de Sequência de DNA/métodos , Fatores de Transcrição , Animais , Autoantígenos/biossíntese , Autoantígenos/genética , Encéfalo/embriologia , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Colágeno/biossíntese , Colágeno/genética , Citoplasma/metabolismo , Distonina , Eletroporação , Embrião de Mamíferos/citologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Genéticos , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/embriologia , Medula Espinal/metabolismo , Células-Tronco/citologia , Colágeno Tipo XVII
14.
Curr Biol ; 9(20): 1203-6, 1999 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-10531040

RESUMO

In mammals, growth of the fetal heart is regulated by proliferation of cardiac muscle cells. At later stages of pre-natal life, this proliferation diminishes profoundly [1] [2] and the dramatic expansion in heart size during the transition to adulthood is due exclusively to hypertrophy of individual cardiomyocytes [3] [4] [5]. Cardiomyocyte hypertrophy also contributes to the pathology of most post-natal heart disease [6] [7] [8] [9] [10]. Within this context, numerous signal transduction pathways have been implicated as the link between the effector(s) and altered cardiac gene expression [11] [12] [13] [14] [15] [16]. A common pathway has yet to be discovered, however. Here, we found that the activity of the stress-activated kinase p38 was enhanced in both types of cardiomyocyte hypertrophy. We also found that a target of the activated p38 kinase is the cardiac transcription factor MEF2. Transgenic mice expressing a dominant-negative form of MEF2C displayed attenuated post-natal growth of the myocardium. These results provide the first evidence for a single pathway regulating both normal and pathologic cardiomyocyte hypertrophy.


Assuntos
Cardiomegalia/genética , Proteínas de Ligação a DNA/genética , Coração/crescimento & desenvolvimento , Fatores de Transcrição/genética , Animais , Cardiomegalia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição MEF2 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/metabolismo , Fatores de Regulação Miogênica , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno
15.
Dev Biol ; 210(2): 367-80, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10357897

RESUMO

Dystonia musculorum (dt) was originally described as a hereditary sensory neurodegeneration syndrome of the mouse. The gene defective in dt encodes a cytoskeletal linker protein, dystonin, that is essential for maintaining neuronal cytoskeletal integrity. In addition to the nervous system, dystonin is expressed in a variety of other tissues, including muscle. We now show that dystonin cross-links actin and desmin filaments and that its levels are increased during myogenesis, coinciding with the progressive reorganization of the intermediate filament network. A disorganization of cytoarchitecture in skeletal muscle from dt/dt mice was observed in ultrastructural studies. Myoblasts from dt/dt mice fused to form myotubes in culture; however, terminally differentiated myotubes contained incompletely assembled myofibrils. Another feature observed in dt/dt myotubes in culture and in skeletal muscle in situ was an accumulation and abnormal distribution of mitochondria. The diaphragm muscle from dt/dt mice was weak in isometric contractility measurements in vitro and was susceptible to contraction-induced sarcolemmal damage. Altogether, our data indicate that dystonin is a cross-linker of actin and desmin filaments in muscle and that it is essential for establishing and maintaining proper cytoarchitecture in mature muscle.


Assuntos
Proteínas de Transporte , Proteínas do Citoesqueleto/deficiência , Músculo Esquelético/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Doenças Neurodegenerativas/genética , Actinas/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Reagentes de Ligações Cruzadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Desmina/metabolismo , Diafragma/patologia , Diafragma/fisiopatologia , Diafragma/ultraestrutura , Distonina , Regulação da Expressão Gênica no Desenvolvimento , Contração Isométrica , Camundongos , Camundongos Mutantes , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Differentiation ; 63(5): 285-94, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9810707

RESUMO

We have isolated from mouse intestine a full-length cDNA clone that encodes an 86-amino acid precursor protein containing a 26-amino acid signal sequence. As deduced from its sequence, the mature 60-aa protein named MPGC60 belongs to the Kazal type of secreted trypsin inhibitors. The MPGC60 peptide has 58% homology with the PEC-60 peptide isolated from pig intestine. In the gut of adult mice, an increasing rostrocaudal gradient in MPGC60 mRNA levels was observed by Northern analysis. In situ hybridization analysis demonstrated strong Mpgc60 expression in Paneth cells and in a subset of goblet cells in the differentiated gut. During postnatal differentiation of the gut, a strong increase in Mpgc60 expression was detected in both small and large intestine. However, in small intestine activation of the Mpgc60 gene occurred earlier than in the large intestine. Apart from the intestinal tract, MPGC60 mRNA was also detectable in the mesenchyme surrounding the uterine epithelium and in endothelia of some blood vessels. However, in contrast to the situation observed in pig, no Mpgc60 expression was detectable by Northern, in situ and reverse transcriptase polymerase chain reaction (RT-PCR) analysis in cells of the immune system, that is, in monocytes, macrophages, peripheral blood and in spleen. Northern blot analysis on mRNA isolated from porcine and murine intestine showed a single transcript in mouse, but several transcripts in pig. Southern blot and fluorescent in situ hybridisation (FISH) analysis demonstrated the presence of a single gene situated in band A of chromosome 4. This region is syntenic with human chromosome regions 6q, 8q and 9p. The gene responsible for human hereditary mixed polyposis syndrome has been localized to human 6q. This raises the possibility that Mpgc60 is a candidate gene for this human disorder.


Assuntos
Regulação da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Genoma , Mucosa Intestinal/metabolismo , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Suínos
17.
Mol Cell Neurosci ; 10(5/6): 243-57, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9618216

RESUMO

The mouse neurological mutant dystonia musculorum (dt) suffers from a hereditary sensory neuropathy. We have previously described the cloning and characterization of the dt gene, which we named dystonin (Dst). We had shown that dystonin is a neural isoform of bullous pemphigoid antigen 1 (Bpag1) with an N-terminal actin-binding domain. It has been shown previously that dystonin is a cytoskeletal linker protein, forming a bridge between F-actin and intermediate filaments. Here, we have used two different antibody preparations against dystonin and detected a high-molecular-weight protein in immunoblot analysis of spinal cord extracts. We also show that this high-molecular-weight protein was not detectable in the nervous system of all dt alleles tested. Immunohistochemical analysis revealed that dystonin was present in different compartments of neurons-cell bodies, dendrites, and axons, regions which are rich in the three elements of the cytoskeleton (F-actin, neurofilaments, and microtubules). Ultrastructural analysis of dt dorsal root axons revealed disorganization of the neurofilament network and surprisingly also of the microtubule network. In this context it is of interest that we observed altered levels of the microtubule-associated proteins MAP2 and tau in spinal cord neurons of different dt alleles. Finally, dt dorsal root ganglion neurons formed neurites in culture, but the cytoskeleton was disorganized within these neurites. Our results demonstrate that dystonin is essential for maintaining neuronal cytoskeleton integrity but is not required for establishing neuronal morphology. Copyright 1998 Academic Press.

18.
Development ; 125(11): 2135-48, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9570777

RESUMO

A central role for the Schwann cell cytoskeleton in the process of peripheral nerve myelination has long been suggested. However, there is no genetic or biological evidence as yet to support this assumption. Here we show that dystonia musculorum (dt) mice, which carry mutations in dystonin, a cytoskeletal crosslinker protein, have hypo/amyelinated peripheral nerves. In neonatal dt mice, Schwann cells were arrested at the promyelinating stage and had multiple myelinating lips. Nerve graft experiments and primary cultures of Schwann cells demonstrated that the myelination abnormality in dt mice was autonomous to Schwann cells. In culture, dt Schwann cells showed abnormal polarization and matrix attachment, and had a disorganized cytoskeleton. Finally, we show that the dt mutation was semi-dominant, heterozygous animals presenting hypo- and hyper-myelinated peripheral nerves. Altogether, our results suggest that dt Schwann cells are deficient for basement membrane interaction and demonstrate that dystonin is an essential component of the Schwann cell cytoskeleton at the time of myelination.


Assuntos
Proteínas de Transporte , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Doenças Desmielinizantes/etiologia , Distonia/etiologia , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Schwann/metabolismo , Animais , Animais Recém-Nascidos , Doenças Desmielinizantes/genética , Distonia/genética , Distonina , Heterozigoto , Homozigoto , Camundongos , Camundongos Mutantes , Proteína P0 da Mielina/biossíntese , Proteína P0 da Mielina/genética , Neurônios Aferentes/patologia , Nervos Periféricos/patologia , RNA Mensageiro/análise , Células de Schwann/patologia , Raízes Nervosas Espinhais/patologia
19.
Mol Cell Neurosci ; 10(5-6): 243-57, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9604204

RESUMO

The mouse neurological mutant dystonia musculorum (dt) suffers from a hereditary sensory neuropathy. We have previously described the cloning and characterization of the dt gene, which we named dystonin (Dst). We had shown that dystonin is a neural isoform of bullous pemphigoid antigen 1 (Bpag1) with an N-terminal actin-binding domain. It has been shown previously that dystonin is a cytoskeletal linker protein, forming a bridge between F-actin and intermediate filaments. Here, we have used two different antibody preparations against dystonin and detected a high-molecular-weight protein in immunoblot analysis of spinal cord extracts. We also show that this high-molecular-weight protein was not detectable in the nervous system of all dt alleles tested. Immunohistochemical analysis revealed that dystonin was present in different compartments of neurons--cell bodies, dendrites, and axons, regions which are rich in the three elements of the cytoskeleton (F-actin, neurofilaments, and microtubules). Ultrastructural analysis of dt dorsal root axons revealed disorganization of the neurofilament network and surprisingly also of the microtubule network. In this context it is of interest that we observed altered levels of the microtubule-associated proteins MAP2 and tau in spinal cord neurons of different dt alleles. Finally, dt dorsal root ganglion neurons formed neurites in culture, but the cytoskeleton was disorganized within these neurites. Our results demonstrate that dystonin is essential for maintaining neuronal cytoskeleton integrity but is not required for establishing neuronal morphology.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Distonina , Gânglios Espinais/patologia , Soros Imunes/química , Imuno-Histoquímica , Camundongos , Camundongos Mutantes Neurológicos , Proteínas Associadas aos Microtúbulos/metabolismo , Peso Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Sistema Nervoso/metabolismo , Especificidade de Órgãos , Ratos
20.
Dev Genet ; 22(2): 160-8, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9581287

RESUMO

Dystonia musculorum (dt) is a recessive hereditary neuropathy of the mouse. Affected animals display loss of limb coordination and twisting of the trunk. Sensory nerve fibers of these mice are severely reduced in number, and the remaining fibers present numerous axonal swellings. The gene defective in dt, dystonin (Dst), encodes a cytoskeletal linker protein that forms the bridge between F-actin and intermediate filaments. Dst is expressed during embryogenesis, whereas overt phenotype in dt mice only appears during the second week after birth. Here we show that axonal swellings are present in sensory nerve fibers of dt embryos as early as E15.5, before myelination and radial axonal growth have begun. Thus disease progression is gradual in dt mice, having begun during embryogenesis. In dt embryos, microtubule network disorganization and cytoplasmic organelle accumulation within axonal swellings were consistently observed. In addition, a few of the axonal swellings presented intermediate filament accumulation. These results demonstrate that dystonin is required for cytoskeleton organization during axonogenesis. They also suggest that axonal transport defects, through microtubule network perturbation, may be the primary mechanism of neurodegeneration in dt mice.


Assuntos
Proteínas de Transporte , Distonia Muscular Deformante/embriologia , Distonia Muscular Deformante/patologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/patologia , Animais , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Citoesqueleto/patologia , Distonia Muscular Deformante/genética , Distonina , Camundongos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...