Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(5): 1234-1249, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536484

RESUMO

AIMS: Dysregulated immune response contributes to inefficiency of treatment strategies to control hypertension and reduce the risk of end-organ damage. Uncovering the immune pathways driving the transition from the onset of hypertensive stimulus to the manifestation of multi-organ dysfunction are much-needed insights for immune targeted therapy. METHODS AND RESULTS: To aid visualization of cellular events orchestrating multi-organ pathogenesis, we modelled hypertensive cardiovascular remodelling in zebrafish. Zebrafish larvae exposed to ion-poor environment exhibited rapid angiotensinogen up-regulation, followed by manifestation of arterial hypertension and cardiac remodelling that recapitulates key characteristics of incipient heart failure with preserved ejection fraction. In the brain, time-lapse imaging revealed the occurrence of cerebrovascular regression through endothelial retraction and migration in response to the ion-poor treatment. This phenomenon is associated with macrophage/microglia-endothelial contacts and endothelial junctional retraction. Cytokine and transcriptomic profiling identified systemic up-regulation of interferon-γ and interleukin 1ß and revealed altered macrophage/microglia transcriptional programme characterized by suppression of innate immunity and vasculo/neuroprotective gene expression. Both zebrafish and a murine model of pressure overload-induced brain damage demonstrated that the brain pathology and macrophage/microglia phenotypic alteration are dependent on interferon-γ signalling. In zebrafish, interferon-γ receptor 1 mutation prevents cerebrovascular remodelling and dysregulation of macrophage/microglia transcriptomic profile. Supplementation of bone morphogenetic protein 5 identified from the transcriptomic approach as a down-regulated gene in ion-poor-treated macrophages/microglia that is rescued by interferon-γ blockage, mitigated cerebral microvessel loss. In mice subjected to transverse aortic constriction-induced pressure overload, typically developing cerebrovascular injury, neuroinflammation, and cognitive dysfunction, interferon-γ neutralization protected them from blood-brain barrier disruption, cerebrovascular rarefaction, and cognitive decline. CONCLUSIONS: These findings uncover cellular and molecular players of an immune pathway communicating hypertensive stimulus to structural and functional remodelling of the brain and identify anti-interferon-γ treatment as a promising intervention strategy capable of preventing pressure overload-induced damage of the cerebrovascular and nervous systems.


Assuntos
Disfunção Cognitiva , Hipertensão , Camundongos , Animais , Peixe-Zebra/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Interferon gama/metabolismo
2.
Vasc Biol ; 5(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260739

RESUMO

Remodelling of cell-cell junctions is crucial for proper tissue development and barrier function. The cadherin-based adherens junctions anchor via ß-catenin and α-catenin to the actomyosin cytoskeleton, together forming a junctional mechanotransduction complex. Tension-induced conformational changes in the mechanosensitive α-catenin protein induce junctional vinculin recruitment. In endothelial cells, vinculin protects the remodelling of VE-cadherin junctions. In this study, we have addressed the role of vinculin in endothelial barrier function in the developing vasculature. In vitro experiments, using endothelial cells in which α-catenin was replaced by a vinculin-binding-deficient mutant, showed that junctional recruitment of vinculin promotes endothelial barrier function. To assess the role of vinculin within blood vessels in vivo, we next investigated barrier function in the vasculature of vcl knockout zebrafish. In the absence of vinculin, sprouting angiogenesis and vessel perfusion still occurred. Intriguingly, the absence of vinculin made the blood vessels more permeable for 10 kDa dextran molecules but not for larger tracers. Taken together, our findings demonstrate that vinculin strengthens the endothelial barrier and prevents vascular leakage in developing vessels.

3.
Cell Rep ; 39(2): 110658, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417696

RESUMO

Blood vessel morphogenesis is driven by coordinated endothelial cell behaviors. Active remodeling of cell-cell junctions promotes cellular plasticity while preserving vascular integrity. Here, we analyze the dynamics of endothelial adherens junctions during lumen formation in angiogenic sprouts in vivo. Live imaging in zebrafish reveals that lumen expansion is accompanied by the formation of transient finger-shaped junctions. Junctional fingers are positively regulated by blood pressure, whereas flow inhibition prevents their formation. Using fluorescent reporters, we show that junctional fingers contain the mechanotransduction protein vinculin. Furthermore, genetic deletion of vinculin prevents finger formation, a junctional defect that could be rescued by transient endothelial expression of vinculin. Our findings suggest a mechanism whereby lumen expansion leads to an increase in junctional tension, triggering recruitment of vinculin and formation of junctional fingers. We propose that endothelial cells employ force-dependent junctional remodeling to counteract external forces in order to maintain vascular integrity during sprouting angiogenesis.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Vinculina , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Neovascularização Fisiológica , Vinculina/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396726

RESUMO

Angiogenesis is a fundamental developmental process and a hallmark of cancer progression. Receptor tyrosine kinases (RTK) are targets for cancer therapy which may include their action as anti-angiogenic agents. Derazantinib (DZB) is an inhibitor of the fibroblast growth factor receptors (FGFRs) 1-3 as well as other kinase targets including vascular endothelial growth factor receptor 2 (VEGFR2), colony stimulating factor-1 receptor (CSF1R) and platelet-derived growth factor beta receptor (PDGFRbeta). This study aimed to investigate the effect of DZB on blood vessel morphogenesis and to compare its activity to known specific FGFR and VEGFR inhibitors. For this purpose, we used the developing vasculature in the zebrafish embryo as a model system for angiogenesis in vivo. We show that DZB interferes with multiple angiogenic processes that are linked to FGF and VEGF signalling, revealing a potential dual role for DZB as a potent anti-angiogenic treatment.

5.
Biochem J ; 467(3): 473-86, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25695743

RESUMO

Acid ecto-phosphatase activity has been implicated in Leishmania donovani promastigote virulence. In the present study, we report data contributing to the molecular/structural and functional characterization of the L. donovani LdMAcP (L. donovani membrane acid phosphatase), member of the histidine acid phosphatase (HAcP) family. LdMAcP is membrane-anchored and shares high sequence identity with the major secreted L. donovani acid phosphatases (LdSAcPs). Sequence comparison of the LdMAcP orthologues in Leishmania sp. revealed strain polymorphism and species specificity for the L. donovani complex, responsible for visceral leishmaniasis (Khala azar), proposing thus a potential value of LdMAcP as an epidemiological or diagnostic tool. The extracellular orientation of the LdMAcP catalytic domain was confirmed in L. donovani promastigotes, wild-type (wt) and transgenic overexpressing a recombinant LdMAcP-mRFP1 (monomeric RFP1) chimera, as well as in transiently transfected mammalian cells expressing rLdMAcP-His. For the first time it is demonstrated in the present study that LdMAcP confers tartrate resistant acid ecto-phosphatase activity in live L. donovani promastigotes. The latter confirmed the long sought molecular identity of at least one enzyme contributing to this activity. Interestingly, the L. donovani rLdMAcP-mRFP1 promastigotes generated in this study, showed significantly higher infectivity and virulence indexes than control parasites in the infection of J774 mouse macrophages highlighting thereby a role for LdMAcP in the parasite's virulence.


Assuntos
Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Leishmania donovani/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Fosfatase Ácida/genética , Animais , Linhagem Celular , Sequência Conservada , Genes de Protozoários , Células HeLa , Humanos , Leishmania/enzimologia , Leishmania/genética , Leishmania/patogenicidade , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Macrófagos/parasitologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...